工研院推AI人工智慧排程 節能同時增產搶商機
記者高兆麟/綜合報導
想像你是餐廳老闆,在用餐的尖峰時刻,該怎麼做才能加快出餐速度、增加營收?分配工作順序與資源,正是所謂的「排程」。經濟部技術處長期以科技專案支持創新科技的應用,投入AI人工智慧、雲端運算等新技術的研發,積極帶動產業蓬勃發展,了解產業AI人工智慧化的過程中,需要龐大的雲端運算能力、軟硬體高度整合設計、分析能力,以及效能驗證平台等建置,因此技術處率工研院與產業合作,利用AI人工智慧打造智慧排程,去年實際導入高科技光電和傳產鋼鐵產線應用,順利帶動產能提升、減少能耗,成為帶動國內廠商智慧化、搶得市場先機的一大助力。
工研院預測,2021年製造業產值為19. 68兆元,產值成長率為4.75%,金屬機電、資訊電子、化學工業、民生工業等製造業四大業別均正向成長,工研院巨量資訊科技中心經理林群惟表示,在競爭激烈的科技產業中,大家都是希望去爭那1%、2%的產能提升,要好上加好的關鍵是,誰能夠看得遠、考慮機台間差異,就能排定好的排程。
林群惟指出,過去排程往往依照人工經驗法則,訂單先來先做,難以發揮最好效能,像高科技產業的昂貴機台,只要一閒置下來,就代表折舊損失,如何提高機台稼動率,在旺季接更多單,並準時出貨,就是一門學問,以高能耗產業為例,就要考慮把工作安排在用電離峰,或是同質性產品一起生產,減少個別耗能,藉此壓低製造成本。
「就像烤麵包,同樣烘焙溫度的麵包與其分多梯次烤,集中在一次烤更省電。」工研院巨資中心執行長馮文生指出,這套智慧排程系統是從兩、三年前開始研發,至今已獲臺灣跟美國各1件專利,另有10餘件專利審查中,去年開始實際導入產線應用,包括高科技光電和傳產鋼鐵產線。
「智慧化排程」利用AI人工智慧,匯集工廠裡如MES、ERP等異質系統的巨量資料,全面性分析動輒數百萬筆的資料,找出最佳資源配置;智慧排程運用在高科技光電產線中,可順利增加1.5%的產能規劃,同時縮短10%以上的排程計算時間;在鋼鐵業上,則率先應用瓶頸站點的排程派工,成功提升7%的目標重量達成率,並透過將產品集中分群生產的方式,減少8%的能耗。工研院也透過資料驗證工具,能自動判斷個別資料表之間的關聯性,列出有所缺漏的部分,讓高科技廠可針對14種常見資料面的問題,請工廠在提供資料前先行驗證,大幅減少近25%的資料排查問題時間。
馮文生強調,除了工廠排程外,智慧排程還可應用在人員排班、行車或航班調度上,另一方面則是持續精進工廠應用,像是訂單交期評估、備料預測、效益評估等。
附圖:▲▼加拿大鋼鐵。(圖/達志影像/美聯社)
▲鋼鐵產業導入智慧排程系統,一方面節約能耗,一方面還能增產。(示意圖/達志影像)
資料來源:https://finance.ettoday.net/news/2000394?fbclid=IwAR0MCWwRKpkRjEH4lN8jajcZRf5kkwOZ1CRUG8mj70i-9B_nfwc-f_7HK2k
同時也有5部Youtube影片,追蹤數超過0的網紅胡毓棠股海淘金,也在其Youtube影片中提到,【節目重點個股】 : 台積電(2330)、茂達(6138)、宏齊(6168)、台半(5425)、騰輝-KY(6672)、台光電(2383)、華通(2313) 胡毓棠是協助投資人投資決策的合格分析師,非凡財經台特約來賓,提供國內外重大財經新聞、理財建議,股票、期貨,AI期貨程式。免付費專線 : 0...
「中 強 光電 ai」的推薦目錄:
- 關於中 強 光電 ai 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於中 強 光電 ai 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於中 強 光電 ai 在 News98 官方粉絲團 Facebook 的精選貼文
- 關於中 強 光電 ai 在 胡毓棠股海淘金 Youtube 的精選貼文
- 關於中 強 光電 ai 在 神王TV Youtube 的最讚貼文
- 關於中 強 光電 ai 在 胡毓棠股海淘金 Youtube 的最讚貼文
- 關於中 強 光電 ai 在 [心得] AI/ML/DL/CV 相關面試心得(長文) - 看板Soft_Job 的評價
- 關於中 強 光電 ai 在 5G+AIoT正式降臨 ... - 中強光電(中光電-Coretronic ... 的評價
- 關於中 強 光電 ai 在 [心得] AIMLDLCV 相關面試心得(長文) | 中強光電ai ptt 的評價
- 關於中 強 光電 ai 在 中強光電AI PTT - 軟體兄弟 的評價
- 關於中 強 光電 ai 在 中強光電ai ptt :: 全台ATM分佈網 的評價
- 關於中 強 光電 ai 在 中強光電ai ptt :: 現在要去哪裡提錢 - morePTT 的評價
- 關於中 強 光電 ai 在 中強光電ai ptt - 百貨業資訊網 的評價
- 關於中 強 光電 ai 在 【台灣無人機】全自動飛行+AI智能辨識- 中光電智能機器人, CIRC 的評價
- 關於中 強 光電 ai 在 [新聞]中光電傳3大事業群裁員公司:年度人力- 看板Tech_Job 的評價
- 關於中 強 光電 ai 在 中強光電AI ptt :: 疫苗施打地圖 的評價
- 關於中 強 光電 ai 在 中強光電AI ptt :: 疫苗施打地圖 的評價
- 關於中 強 光電 ai 在 中強光電(中光電-Coretronic... - 淡水休息 的評價
中 強 光電 ai 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
跨界圍攻:「AI 視覺」公司已集體殺入智能駕駛圈
2021-05-22
雷鋒網
如今的智能汽車賽道,說挨肩迭背也不為過。
新勢力派引領變革,最為二級市場所看好;泛網際網路派占流量高地,擅技術遷移;傳統車企派根基夯實,品牌名聲享譽在外。
甚至財大氣粗的某地產派也曾放下豪言――力爭 3-5 年成為世界規模最大、實力最強的新能源汽車集團。
如華山比武般,大俠們個個嚴陣以待,各方勢力黃巾高擎,左右開弓。
你看看,前有行業鐵幕,中夾破釜沉舟之心,後是險峻江湖,哪還有初進牛犢的落腳之處?
即便如此,在月前燥熱尚未消退的上海車展後,鮮少被提及的AI視覺公司還是擠了進來。
看慣了巨頭們的聲勢浩蕩,轉身發現AI視覺企業們的入局講究一個循序漸進,起承轉合。
而他們的悄然進入,也給智能駕駛領域增添了幾段新故事。
海康威視:左手自研、右手投資
AI安防老大哥海康,深耕智能駕駛市場履行一貫的低調風格。
其對智能駕駛的綢繆始於2015年,當時海康內部計劃開展新業務,起初確定的業務有三:海康汽車電子、海康機器人、海康螢石。
2016年7月,耗資1.5億的海康汽車技術正式成立。
在此前後,海康還分別於2016年6月投資了威視汽車科技,2017年7月成立了海康汽車軟體。
2018年是海康智能駕駛的上升之年,市場渠道、技術研發上均有突破。
2018年2月,他們上線高級駕駛輔助系統、自動泊車APA+,同年又成功打入2019款保時捷卡宴的配置中。
汽車產業以穩為重,鏈條長、利益盤根錯節,新入者切入並不容易,而海康卻出其不意一舉打入高端。
數據顯示,截至2018年底,海康汽車已經通過了20家OEM的審核並成為其合格供應商,公司的主要客戶包括一汽集團、北京汽車、上汽榮威、上汽名爵、本田汽車等。
其中,定點項目超過200個,已量產的項目超過100個,覆蓋500家渠道合作夥伴。
成立子公司自研之外,投資也是海康較為看中的一大路徑。
在成立汽車電子公司之前,海康就曾在2016年入股毫米波雷達企業森思泰克,並成為後者的第二大股東。
2013年成立的森思泰克既是毫米波雷達第一批探路者,也是成績較為優秀的領軍企業之一。
森思泰克創始人秦屹是英國海歸的雷達專家,在英從事雷達研發和製造十餘年。
據悉,森思泰克所聚團隊成員中80%具有軍工背景,掌握雷達硬體、軟體和量產工藝等幾乎全部核心技術。
據悉,森思泰克毫米波雷達在北京、石家莊設研發中心,在蕪湖設總廠,在杭州設車載事業部。
石家莊,有軍工雷達大本營之稱,軍民毫米波雷達研發人才密集,且電科雷達研發54所和13所都在石家莊。
森思泰克也頗為爭氣。
2019年,思泰克首次實現大批量77GHz車載毫米波雷達國產化、突破國際巨頭壟斷。
森思泰克的77GHz毫米波雷達成為國內首個真正實現「上路」的ADAS毫米波雷達傳感器。
目前,森思泰克已成為紅旗、一汽、韓國現代、東風日產、長城、長安等國內外車企體系內供應商。
海康與森思合作的高分毫米波成像雷達+視覺融合技術,或許將對壘低線束雷射雷達。
大華股份:立足整車,三電、網聯、自動駕駛多點齊發
零跑汽車脫胎於大華股份的汽車部門,獨立後獲得了大華股份的技術和資金支持。
2015年,大華股份副董事長兼任大華股份CTO朱江明親自下場,成立零跑。
經歷2019年新能源補貼大退坡,不少新勢力造車企業已經出現嚴重資金問題,且變現存疑。
零跑汽車亦不例外。
2018年,零跑虧損 3.07 億元後,2019 年上半年又持續虧損約 2 億元。
2019年1月4日,零跑汽車第一款車S01上市,該車2019年全年交付約1000輛。
對於連續虧損的零跑,唱衰論一直也在網上發酵。
朱江明對此表示,「即使不融資,零跑也能再活三年。」他透露,大華股份將持續為零跑輸送資金,「當然我們希望能更多的融資,發展得更快些。」
在經歷融資受阻後,2021年伊始,零跑官宣融資43億元,合肥政府投資平台亦在其中。
今年年初,此前曾投資蔚來的合肥市政府與零跑方面簽訂戰略合作協議,未來合肥方面將對零跑B輪融資投資約20億元,並展開更多合作。
現金流方面,從不被業界看好,到巨額融資的到帳,仿佛又讓市場看到了可能性。
技術層面,零跑汽車稱自主研發了三電系統、智能網聯繫統、自動駕駛系統三大核心技術,並完全掌握自動駕駛核心硬體平台和算法技術,實現對自動駕駛感知、決策、執行層關鍵技術的自主化全覆蓋。
產品層面,零跑汽車目前旗下擁有3款量產車型,分別為:零跑T03、零跑S01以及零跑C11。
三款產品風格各異,銷量不一。
2020年,零跑汽車官方消息稱,2020年累計銷量達11391輛,其中T03為主力軍,貢獻了10266輛。
創始人朱江明也底氣頗足:「2023年零跑進入造車新勢力TOP3、2025年在國內新能源汽車市占率達到10%」。
商湯:求精感知技術,並進艙內艙外
與其他AI獨角獸相比,商湯在自動駕駛上布局較早,也更全面。
2017年進軍自動駕駛,商湯的汽車產業布局可分為艙內(智能車艙)和艙外(智能駕駛)兩大層面。
智能車艙層,基於前裝量產解決方案,以視覺感知技術為錨點,由點及面,覆蓋用戶從上車到用車的多個場景。
商湯的SenseAuto Cabin智能車艙解決方案包括駕駛員感知系統、座艙感知系統、智能進入等等功能。
據悉,在過去的兩年多時間裡,商湯已經拿下了30多個國內外頭部夥伴的智能車艙定點量產項目,覆蓋車輛總數超過1300萬輛,其中10 余個項目已經實現了量產交付。
智能駕駛層,商湯選擇與主機廠合作,做汽車廠商(OEM)及一級供應商(Tier1)的解決方案供應商。
在自動駕駛感知、決策和執行三大要素中,汽車廠商和Tier1占據重要角色。
2017年,商湯與OEM廠商本田簽訂了為期5年的長期合作協議,研發適合乘用車場景的L4級自動駕駛方案。
2018年,商湯完成杭州、上海半開放場地內實現無接管自動駕駛。2019年,在日本落地「AI自動駕駛公園」,將用於自動駕駛汽車的研發和測試,並面向公眾開放。
商湯的自動駕駛業務定位,是以視覺為主,其他元素為輔。
視覺之外,商湯在高精度地圖和雷射雷達、毫米波雷達等方面皆有技術儲備。
通過搭配多種不同傳感器,實現感知、分析預測、決策規劃控制、城市級三維地圖重建及無人車高精度定位能力等技術功能。
目前,商湯對自動駕駛技術進行了多次疊代,形成了一套較為成熟的智能駕駛方案:SenseAuto Pilot智能駕駛解決方案,聚焦 L2+ 級高級輔助駕駛至L4級自動駕駛創新,並在上海車展首次發布SenseAuto Pilot-P駕駛領航方案。
軟體之外,2019年3月,商湯還推出首款原創機器人SenseRover X自動駕駛小車,這是款針對自動駕駛的教學產品。
奧比中光:戰投+自研,兩條腿走路
奧比中光是AI初創企業中對智能汽車投入最多的公司之一。
作為一家AI 3D感知技術方案提供商,成立於2013年的奧比中光現今已在3D傳感領域深耕近8年。
3D傳感作為人工智慧領域最核心的視覺感知技術,融合了晶片、算法、光學、軟體等多交叉學科技術,是人工智慧時代感知識別、新型人機互動等最為核心的技術載體。
除3D結構光外,奧比中光在雙目、iTOF、dTOF、雷射雷達等主流3D視覺感知技術領域也有長遠布局。
早在2018年,奧比中光就投資雷射雷達晶片級解決方案提供商飛芯電子。
飛芯電子成立於2016年,是一家專注於光電設備、雷射雷達研發、集成電路設計的高新技術企業。
成立僅2年,飛芯電子獲得了博世等注資。
據悉,飛芯電子以研發、生產雷射雷達系統及核心晶片為主要業務,客戶群體主要面向國內外汽車、機器人、無人機等生產研發廠商。
飛芯電子稱,其針對行業痛點,採用了連續波載調製或相干外差探測方案,利用焦平面點雲測距技術,滿足較高的空間解析度和較大的視場角,探測距離可超過200m,且無需複雜昂貴的機械掃描裝置,不斷提高系統可靠性,也使獲得的圖像更為清晰。
2019年4月,奧比中光成立車載3D視覺傳感方案提供商奧銳達。
奧銳達的業務重心在智能座艙,產品包括ToF攝像頭模組、雷射雷達等硬體以及3D ToF智能座艙方案。
承襲了奧比中光的3D視覺感知技術,奧銳達可為智能汽車帶來DMS、OMS、手勢識別、人臉識別、身份驗證等多種3D化智能功能。
其金融級安全的3D人臉識別方案,保護駕乘人員的信息安全;通過3D-ToF 攝像頭,實現多區域手勢控制;同時,智能汽車還可以通過3D信息,判斷駕乘人員體型、座艙內位置等。
近日,奧銳達還發布了為智能汽車量身定製的3D ToF智能座艙方案。
虹軟:主攻艙內,走軟硬一體之路
2018年,為應對手機市場見頂飽和,虹軟正式將業務從智慧型手機領域拓展至智能汽車、IoT等領域,一舉橫向突進自動駕駛市場。
虹軟科技創始人兼CEO鄧暉曾表示,未來每輛汽車裡都有10個以上的攝像頭,智能座艙將成為智能駕駛視覺AI的重點應用場景。
與其手機定位一樣,虹軟的智能汽車走軟硬一體解決方案,力圖做車載視覺一站式解決方案的供應商。
從招股書看,截至2018年底,虹軟科技的「汽車等loT產品」的業務收入僅367.95萬元,占比不足1%。
與多數視覺企業加裝雷射雷達等技術不同,虹軟的的自動駕駛解決方案完全基於視覺層面,且核心聚焦在車內智能。
虹軟科技的智能駕駛視覺解決方案,包括車內安全駕駛預警、駕駛員身份識別、車內安全輔助、輔助駕駛預警、自動泊車等眾多解決方案。
2019年3月,虹軟入股開易(北京)科技,後者主營業務包括主動安全智能終端(ADAS+DMS+人臉識別)、SDK軟體服務以及硬體整體解決方案。
2019年,虹軟在科創板上市。
虹軟表示,其在計算機視覺領域積累深厚,融合其暗光高反差拍攝、防抖等影像視頻增強算法技術,即使在車內光線不佳、人臉角度多變、車輛晃動等特殊情況下,也能夠很好地完成車輛周圍環境監測和車內人員監測等功能。
上市後,虹軟大力布局智能汽車及其他 IoT 智能設備領域,目前成效初現。
據虹軟表示,智能汽車板塊2019年開始真正量產。
數據顯示,2020年,智能駕駛視覺解決方案業務增長較快,實現營業收入6592.99萬元,同比增長310.61%。
據悉,虹軟智能駕駛相關產品包括DMS(駕駛員識別系統)、ADAS(高級駕駛輔助系統)、BSD(盲區檢測系統)、OMS(乘客識別系統)、Interact(視覺互動系統)、Authenticate(生物認證)、AVM(3D環景監視系統)、AR HUD(AR抬頭顯示)和智能後備箱等各類以核心算法為基礎的相關軟體解決方案。
高工智能汽車研究院數據顯示,DMS(駕駛員識別系統)的算法業務是其智能汽車業務的主要收入來源。
虹軟今年透露,其智能駕駛業務已實現37+7個前裝車型定點開發(37款量產車型定點,7款車型預研),以提供純算法為主,公司直接與Tier1或整車廠簽約,涉及多家國內主流車企(含造車新勢力)及部分合資車企。
格靈深瞳:最早入局,協同成長
成立於2013年,格林深瞳是最早的一批AI視覺公司,也是最早一批投入自動駕駛的AI視覺公司。
當年,格靈深瞳聯合英特爾研究院院長吳甘沙、國家智能車未來挑戰賽冠軍團隊負責人姜岩等一同創辦了一家專注於自動駕駛領域的公司――馭勢科技。
2016年,馭勢科技在北京誕生,格靈深瞳作為投資方入股馭勢科技。
過去五年,馭勢科技在洶湧潮水中奮力前行。
2017年1月的CES,馭勢科技向世界推出了無人駕駛概念車「城市移動包廂」,該車型成為了全球第三款獲得紅點設計大獎的無人車。
同年,這家公司分別在4月和6月,於白雲機場、杭州來福士率先展開面向普通公眾的無人駕駛商業化運營。
今年1月21日,香港國際國際機場宣布,由馭勢科技與香港國際機場管理局共同研發的無人駕駛物流車將替代人力駕駛拖車,承擔往返機場和海天客運碼頭的行李運輸任務,意味著其在機場的運用已逐步上量。
在過去的一年中,馭勢科技與長安民生物流、一汽物流、巴斯夫(BASF)等數十家企業建立了商業合作。
據透露,在國內某豪華品牌車型上,馭勢科技提供的軟體算法也已前裝量產,並幫助該自主品牌率先推出 L3 級自動駕駛功能。去年馭勢科技交付了數百套「AI駕駛員」,實現年度業績同比增長150%。
前不久,馭勢科技宣布完成累計超10億元人民幣的新一輪融資,在這場融資中馭勢科技獲得了國家資本的參投。
馭勢科技在無人物流埋頭苦幹,潛心鑽研,其成績是在無人物流領域的業務布局幾乎占到了國內市場的70%。
2016年誕生至今,馭勢科技經歷萬千辛酸,在密如繁星的棋子中探索出一條最優解法,以機場定式,在精進自我的路上捨命狂奔。
而格林深瞳的自動駕駛之路,也隨著馭勢科技越走越遠。
曠視:立足AI視覺,做車載全套解決方案
2018年11月,曠視曾公開展示過車載AI視覺解決方案。
彼時的曠視,其解決方案基於車載系統和駕駛過程的人臉解鎖、帳戶切換、駕駛員識別、多模態交互等功能為主,並收取相應軟體使用費和服務費。
「人臉解鎖」可通過車外的攝像頭捕捉駕駛員人臉信息並進行身份的識別與確認,實現人臉解鎖車門、臨時授權人臉解鎖車門;
通過車內的攝像頭實現刷臉啟動發動機、保險箱等,「帳戶切換」功能可通過人臉識別無感知精準識別駕駛員身份,配合車載智能系統,快速調整用戶預設的車輛各項個性化配置(座椅位置、反光鏡角度、空調溫度、音樂、燈光、導航等)。
「駕駛員識別系統」可通過車內攝像頭,實時查看駕駛員駕駛狀態和行為,在駕駛員出現疲勞駕駛或分心駕駛跡象時觸發預警,保障行車安全。
曠視曾表示,其與蔚來汽車實現了未來在智能汽車應用上的深度合作,真正的無人駕駛商用較遠,曠視聚焦對人類駕駛員的理解和輔助。
的盧深視:基於3D視覺相機,為產業賦能
的盧深視在智能汽車領域的角色,更多是與第三方合作的方式。
作為三維視覺領域的佼佼者,的盧深視在高精度深度感知成像、三維實時高精度重建、三維跟蹤識別及感知等技術方向上深耕多年。
上月,的盧深視出席了2021全球自動駕駛高峰論壇,並展示了其最新3D CV相機及其應用。
的盧深視兩款自研3D CV相機,其在5米範圍誤差小於1mm,指標超越國際3D相機巨頭,量產良率達99%以上。
基於前端低功耗嵌入式平台,兩款相機均可實現非接觸式精準識別,基於結構光原理,更可還原人臉高精度3D細節信息,通過人臉立體尺寸信息精準辨識人員身份,同時對於二維和三維攻擊識別正確率高達99.99%。
多提一句,安全性上,可達金融級別。
據悉,除了智能汽車領域,兩款相機也在智能家居、金融支付、智慧交通等領域展開布局。
智能駕駛:AI視覺第二春
AI視覺眾企入局智能駕駛賽道,並非跑題創作。
其一,布局智能駕駛,是戰略向外牽引使然。
自計算機視覺出走實驗室樊籠,AI安防、自動駕駛便拿到一大波投資人的「S卡」。
當年AI落地之時,安防提供了絕佳的土壤,AI公司在此實現技術與產業的交融。
期間,AI與安防彼此成就:
安防向世界輸送的海大宇等驕子,幾乎主導了全球安防市場話語權,行業極速擴容,向城市各個領域蔓延。
AI獨角獸們也從安防起家,並逐漸走向千行百業,邁向全域。
左邊是AI安防成主要營收來源,右邊是AI安防逐漸占領一席之地。擺在入局者眼前的,是如何保持縱向持續增長的必答題。
擺脫路徑依賴,尋找AI安防之外的市場,已是當務之急。
如果說,過去五年,AI視覺公司的路徑是「通用AI SDK 重定製集成項目實施」的話,那麼未來五年,他們可嘗試「非標領域的標準市場 形成標準化產品 低成本規模化複製」的路子。
非標領域的標準市場在哪?自動駕駛、醫療、晶片赫然在列。
縱觀AI市場,目光所及賽道幾近全員虧損,掘金志認為,與高成本人力無關,因為虧損在放大;與硬體儲備也無關,因為可以OEM。
核心在於:AI安防未能標準化,項目需求又無窮多。
那就去標準化市場?有人問。
標準化市場可以一夜之間把價格做到無窮低,但高額運營支出非AI企業所能承受。
標準化市場上不去,定製化市場下不來,AI公司的突破口在哪?答案是:非標準化市場裡找到標準化路子。
賽道上,自動駕駛正是明顯的非標領域的標準市場。與AI安防共通的是,智能駕駛初創企業也依賴資本輸入。
但前者場景碎片化、項目定製化,產品標準化之路漫漫;後者以智能汽車為載體,技術上軟體定義、人機協同一旦成型,會一招吃遍天下鮮。
眼下,不少智能駕駛新勢力已實現產品量產,並獲得一定規模的現金流。
對於一眾搶灘的各路豪傑,AI視覺的入場似乎有些遲。
但智能汽車賽道正熱、格局未定,智能汽車產業鏈長、細分領域繁雜,此時入場的AI視覺,你可以說它入場稍晚,但不能說它機遇不在。
其二,自動駕駛或是計算機視覺技術應用必登之高峰。
近幾年,機器學習持續深入,計算機視覺應用亦有了飛速進展。
千山萬水跨越的人臉識別小山,是AI最成功,也最基礎的一環。
真正的AI,是貫穿感知-決策-執行的長鏈條,這一點在自動駕駛上體現得尤為極致。
感知層,通過各類硬體傳感器捕捉車輛的位置信息以及外部環境信息;
決策層的「大腦」,基於感知層輸入的信息作環境建模,從而形成對全局的理解並作出決策判斷,再向車輛發出執行的信號指令;
最後的執行層,將決策層的信號轉換為汽車的動作行為。
自動駕駛技術是人工智慧、高性能晶片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地難度之大,各路AI無不動容。
計算機視覺應用場景萬千,自動駕駛無疑是極具挑戰性、最具想像力的一條。
越是長在懸崖之巔的花,越讓人著迷。
一直以來,在環境感知環節,存在AI視覺與雷射雷達技術路徑之爭。
不管何種路徑更優,已經在視頻物聯領域經歷過殘酷驗證,AI技術儲備上,AI視覺企業們也已攢下不少經驗。
狼多肉少,能吃幾成飽?
「自動駕駛是很低級的行業嗎?所有人都想來分一杯羹。」
這調侃入局者們聽了,大抵會覺得分外委屈。
大多數困在第一道門檻,錢。
「沒有200億不要造車」的聲量振聾發聵,造車明星蔚來也曾資金一度跌入谷底。
雖說AI視覺公司除了大華的零跑汽車外,其他參與者目前都專注於智能駕駛硬體和系統,但這也是個昂貴的行當。
不少企業本身依靠資本輸血,是否有更多資金和精力參與自動駕駛廝殺,是他們需要思考的問題。
行業壁壘不容小覷。
汽車產業發展百餘年才形成了一套嚴謹而完整的生產流程和制度,乃至於衍生出了一套基於安全的工業文明,不是後來者們在短短的幾年時間裡就能夠顛覆的。
作為智能汽車的核心體現,自動駕駛技術遠未達到成熟的程度;車艙內的智能化體驗也還有豐富的想像空間。
換言之,如果跨界選手想要在智能汽車的世界裡找到自己的一席之地,不僅要高度重視安全這一話題,還要擁有強大的軟體能力。
但在前一輪前沿傳統主機廠以及蔚來、小鵬、理想等新造車勢力的人才軍備賽過後,新入局的玩家要如何吸納更多的專業人才?又如何權衡來自世界各地的人才的意見和建議,從而做出最終決策?
與此同時,智能汽車的研發不是一件只要懂軟體就能夠做成功的事情。
隨著電動化、智能化大潮的到來,造車的門檻看似降低了不少,但在這一過程中遇到的內因外因的難題,可能遠比想像中的要多。
行業資源尚需積累。
相比AI安防、智慧城市等領域,AI視覺跨界者在智能汽車領域品牌影響力和渠道資源不足,短期內,造血盈利能力較低。
而且,AI視覺企業布局智能駕駛時間不一,技術雖有共性但終究有別,相較於大多數垂直企業,尚有諸多不足。
故可見,過去幾年,即使AI視覺巨頭,步伐也較為謹慎,大多圍繞艙內智能、ADAS市場。
如果說巨頭們跨界,自帶熱搜體質,AI視覺企業跨界的光彩,多少暗淡了些。
前者身家優渥,拿著頂流體驗卡入場,高屋建瓴,後者更多是以小舟,涉鯨波。
當然,隨著技術日進一桿,資源聚沙成塔,營收逐年增長,他們將投入包括但不限於研發、營銷、資本等層面,難保這一葉扁舟,哪天出其不意成為可遠航的重磅郵輪。
莫道桑榆晚
眾多跨界玩家湧入智能汽車,激發了新的生機。
無論從何種角度來看,智能汽車的市場都蘊藏著無限機遇。
這個市場需要鲶魚的存在。
在新時代的風潮之下,我們固然期待看到不斷有實力強勁的新玩家們入局,留下中國智能汽車史上濃墨重彩的一筆。
我們也殷切地希望,這是一片能夠承載百花齊放,充滿新的生機和活力的沃土,而不是拔苗助長的投機者的港灣。
憑藉先發優勢,不少入局者或已暫列行業前位,但隨著各方力量的持續加碼,後來居上也並非不無可能。
保持警惕,時刻成長。
資料來源:https://www.chinahot.org/science/83632.html?fbclid=IwAR2Mm9ZU17srF7sCywqUPw-hmRAyGN_sN9XnL0_Q6mE4bUYwUpgGNX3wHps
中 強 光電 ai 在 News98 官方粉絲團 Facebook 的精選貼文
展望系列科學普及演講 本週五(5/21)第三場
人類電磁波譜上的最後一塊拼圖—兆赫科技的挑戰與其在6G、生醫之應用契機
兆赫(Terahertz, THz)波段,所指的是頻率在10^12 Hz附近,介於微波(<100 GHz)和遠紅外頻段(>10THz)之間的電磁波譜頻帶。相對於X射線(X-Ray),此區域也被稱為T射線(T-Ray)。然而,歷史上一直很少有研究和發展兆赫波段的應用,最主要的原因為有效的產生和探測兆赫波是一個極其困難的問題。
在這次的講題之中,國立臺灣師範大學光電工程研究所 楊承山 助理教授將與大家分享兆赫科技在各個不同領域上創新研發的內容之外,以確認其的確有成為建構臺灣未來的黑科技之潛力。而如何將其超高頻寬且與物質作用強的特色廣泛應用於生活和產業上,如無人車、精準醫療、物聯網、和AI科技。更是需要我們大家齊心協力的課題,一同成就人類這電磁波譜上的最後一塊拼圖。
直播網址:https://youtu.be/KX_jw7MiH08
直播資訊:
時 間:05/21 (週五) 19:00 ~ 21:00
主 題:人類電磁波譜上的最後一塊拼圖—兆赫科技的挑戰與其在6G、生醫之應用契機
主講者:國立臺灣師範大學光電工程研究所 楊承山 助理教授
參加方式:
線上直播:於演講時間連結至展望Youtube頻道,可以在直播前訂閱、追蹤頻道,並設好提醒的小鈴鐺!
注意事項:
1.本系列講座因應疫情改為線上講座。
2.本活動因應疫情無現場報名,不在原演講廳舉辦。
3.本活動全程約120分鐘,最後為線上問答,可在直播聊天室留言。
活動網站:
1.展望Youtube頻道- https://goo.gl/42tPuR
2.展望臉書粉絲團- https://www.facebook.com/ntuprospect/
3.展望官方網站- http://prospect.phys.ntu.edu.tw
4.展望歷屆線上影音- http://knowledge.colife.org.tw/starphys
中 強 光電 ai 在 胡毓棠股海淘金 Youtube 的精選貼文
【節目重點個股】 : 台積電(2330)、茂達(6138)、宏齊(6168)、台半(5425)、騰輝-KY(6672)、台光電(2383)、華通(2313)
胡毓棠是協助投資人投資決策的合格分析師,非凡財經台特約來賓,提供國內外重大財經新聞、理財建議,股票、期貨,AI期貨程式。免付費專線 : 0800-615588
加入胡毓棠Line群組享受最即時投資資訊 : https://line.me/R/ti/p/%40ssn1438l
【專長介紹】
學歷:台北大學統計系、政治大學國貿研究所
經歷:非凡財經台、商業台節目來賓:錢線百分百、股市現場、財經晚報等
專長:深入產業研究,對於市場有極高的敏感度,擅長挖掘中小型黑馬股。
操作特色:穩中求勝,結合技術面、籌碼面操作輔助,追求穩定利潤報酬。
中 強 光電 ai 在 神王TV Youtube 的最讚貼文
プレステ6の新コントローラーか? ソニーが特許出願した「非発光物体をPlayStationのコントローラーとして使用することができる」という驚きの研究について
特殊なカメラを使ってマッピングすることにより、バナナやマグカップやペン、恋人のおでこなど、何でもコントローラーにすることができる!?
人間の毛髪とほぼ同じ大きさの「四足歩行ロボット」を、皮下注射で体内に注入できるようになった!? 太陽光電池で動く (英科学誌ネイチャー)
AIが小説を執筆して、文学賞の一次選考を通過した! 星新一さんのような文章で「コンピューターが小説を書く日」というタイトルで
カナダのトロン度大学は、お気に入りのSF小説を50篇を入力すると、自動で「独自のアイデアが盛り込まれた」ストーリーを作ってくれるAIを開発
クリエイティブな仕事は、人間にしかできない その分野はAIに仕事を奪われない と言われていたが、そんなことも無さそう、、
★ 神王リョウが、「あなたを、90日で、稼げるように」育てます!!
神王リョウの株とFXの生徒 新期メンバーの募集
【早期特典】は、まもなく終了します
https://goo.gl/yKZg7b
「本物のプロの投資ノウハウ」を、本格的に学びたい方は、こちらがオススメです!!
TVや雑誌で、150回以上取り上げられた「株とFXと仮想通貨で稼げる学校」です
★ チャンネル登録はこちら
https://goo.gl/Dl3Bur
★ 神王リョウ・公式メルマガはこちら 【総額・30万円相当のセミナー】を、無料でプレゼント中! 締切迫る!? ご登録してくださった方・全員もらえます(^^)/
http://blog.ryo-kamio.com/archives/51722065.html
-----------------------------------------------------------------------
神王リョウのSNSなど
-----------------------------------------------------------------------
◆ Twitter
https://twitter.com/ryo_kamio
◆ 神王TVさぶちゃんねる
https://goo.gl/tE1pUf
◆ Instagram
https://instagram.com/ryo_kamio/
◆ ブログ
http://blog.ryo-kamio.com/
-----------------------------------------------------------------------
理想の収入と、理想の人生を、手に入れる方法
-----------------------------------------------------------------------
★ TVなどで150回以上取り上げられた、株とFXで稼げる学校 【期間限定】
http://www.my-ir.com/iris/
★ 潜在意識・超意識・セルフイメージを、とことん使いこなしたい方へ
http://www.my-ir.com/rkss/
★ 神王流・500個の成功法則 ゴール設定、時間管理、勉強法など
http://www.my-ir.com/irc/
★ YouTubeで稼ぎ、あなたのファンを作る方法 ビジネスや集客に活用したい方も
http://www.my-ir.com/youtubranding/
★ 好きなことをするだけで、あなたのWebサイトやブログで稼げます
http://www.my-ir.com/wkl/
-----------------------------------------------------------------------
その他
-----------------------------------------------------------------------
◆ 温かい応援メッセージやファンレター(笑)をお待ちしております (上記の「神王リョウ・公式メルマガ」内のフォームからお願いします!)
【神王TV】は『見ているだけで、幸せなお金持ちになれるテレビ』というテーマの元、神王リョウが20代で30億円以上稼ぐことができた、あらゆるノウハウをお伝えしていく番組です!!
#PS6
#プレステ6
#ソニー
中 強 光電 ai 在 胡毓棠股海淘金 Youtube 的最讚貼文
【重點個股】 : 國光生(4142)、奇鋐(3017)、雙鴻(3324)、建準(2421)、惠特(6706)、久元(6261)、旺矽(6223)、瑞儀(6176)、台表科(6278)、金居(8358)、聯茂(6213)、台光電(2383)、台燿(6274)、台光電(2383)、富邦媒(8454)、東森(2614)、網家(8044)
【重點族群】 : 蘋果概念股、中美貿易戰、散熱族群、特斯拉概念股、遊戲概念股、防疫概念股
胡毓棠是協助投資人投資決策的合格分析師,非凡財經台特約來賓,提供國內外重大財經新聞、理財建議,股票、期貨,AI期貨程式。免付費專線 : 0800-615588
加入胡毓棠Line群組享受最即時投資資訊 : https://line.me/R/ti/p/%40ssn1438l
【專長介紹】
學歷:台北大學統計系、政治大學國貿研究所
經歷:非凡財經台、商業台節目來賓:錢線百分百、股市現場、財經晚報等
專長:深入產業研究,對於市場有極高的敏感度,擅長挖掘中小型黑馬股。
操作特色:穩中求勝,結合技術面、籌碼面操作輔助,追求穩定利潤報酬。
中 強 光電 ai 在 5G+AIoT正式降臨 ... - 中強光電(中光電-Coretronic ... 的推薦與評價
5G+AIoT正式降臨⚡⚡⚡ 中光電智能機器人✖中華電信5G開台 領航起飛AI無人機✖5G行動通訊 4K飛行影像零時差同步 預設任務路徑自行回巢充電 現場直播LIVE畫面5G最 ... ... <看更多>
中 強 光電 ai 在 [心得] AIMLDLCV 相關面試心得(長文) | 中強光電ai ptt 的推薦與評價
中強光電ai ptt,大家都在找解答。 中強光電本來是投錯職位,因為他要求是博士學歷的資深主任級工程師,後來部門主管主動來電和我談了一小時,了解他們也正在尋找年輕 ... ... <看更多>
中 強 光電 ai 在 [心得] AI/ML/DL/CV 相關面試心得(長文) - 看板Soft_Job 的推薦與評價
好讀版:https://goo.gl/TtchR6
過去曾受益於許多面經,現在輪到小弟出社會面試了,前來回饋心得。個人背景:115應
屆CS碩,雜事纏身拖到10月才開始面試,研究領域為 Computer Vision 相關,碩論做
3D Object Detection 偏自動駕駛領域。104履歷設定不開放,只找 ML/CV 相關職位主
動投(關鍵字:AI、機器學習、深度學習、電腦視覺,以及上述英文),鎖定台北區域
,有過濾掉不少看起來有風險的職缺。
聰泰科技
面試官是 Kaggle 拿過冠軍的高手,一開始介紹了公司的業務和盈利來源,後主要詢問我
的工作經歷和碩論,注重模型的架構、實驗比較和遇到的困難,然後純聊技術,從
Kaggle 到本人 GitHub 上的項目都有涉及。該公司的業務來源範圍很大,幾乎涵蓋了電
腦視覺的幾個應用,面試官也介紹了幾個比較刁鑽的客戶案例,例如車內乘載人數偵測和
壽司輸送帶的即時座標定位與分類等。後面強調公司很注重不同領域部門間的合作,以及
處理不同晶片上架構的兼容問題。
第二關是公司副總前來面談,以產品解度介紹公司,感覺他傾向於找到相同價值觀的人,
認為只要把子領域發揮到極致就會有價值,有點工匠精神的韻味,雙方相談甚歡。最後口
頭得知取得了 offer ,薪水符合期望,副總很熱情地帶我逛了一圈公司,環境是開放式
的,設備很齊,也看到了蠻多剛剛提到的產品和 CV 相關應用,總體來說挺滿意的,數天
後收到 HR 正式 offer。這次的感想是技術職和管理職會從不同角度看待產品和同事/員
工,面試時可以根據對方角色(和個性)來決定話題重心,大膽表達自己的想法。
結果:Offer Get。
北京零零無限科技
知名無人機公司,今年在台北開的新據點,原本面試排滿想延一個禮拜,不過 HR 說 VP
下禮拜回大陸前想見我一面,所以擠出了時間提早面試。開始是一小時的筆試,範圍包含
電腦視覺、機器學習、深度學習和機率統計。我寫滿了兩面白紙,主要是問到某些模型(
ResNet)和 Boosting 方法(AdaBoost)不知不覺多扯了一些;機率問題很簡單,貝氏定
理就能解決;有題基礎的電腦視覺問題因為太久沒碰沒完整答出,只憑印象寫了一些推測
,算是可惜的地方。
第二關是兩位算法工程師的技術面試,首先自我介紹,被問了碩論細節、黑客松經歷和
GitHub 上的項目,誇了一句技術涉獵領域廣,因為有個東方 Project 相關的項目還被
說有點宅(笑)。我問了工作內容、專案如何進行、為何進入這間公司、最有挑戰的部分
等,兩位面試官很親切,談起來就像和朋友聊天,能看出平常工作氣氛不錯。台北辦公室
負責追蹤演算法,由於只依賴主 Camera 因此較有挑戰性。因為過了中午,面試官還幫我
買了個便當,很是感謝他們。
第三關的 VP 來自北京總部,過去在 Nokia 和 HP 工作,十分親切。一開始詢問對公司
的了解程度,由於我在兩年前就看過展示影片並持續關注,老實地表達對初代 Hover
Camera 的喜愛。另外問了以算法工程師的角度,對無人機未來應用的設想。這裡受限於
我的想像力,大致提了極限運動跟隨、航拍高度等功能,就技術層面分析實現的利弊和限
制,他提了個不同方位路線跟隨個人覺得很有趣,也討論到了和競爭對手大疆做的消費者
受眾區別,聊天中學到很多東西。接下來是人格特質方面的問題,包含自己的缺點、平時
興趣、能為公司帶來的貢獻等,最後因為看我是個小粉絲還透露了一些二代的未公開資訊
給我,非常期待二代的面世!第四關是 HR 面試,討論了待遇和福利工時, HR 問題偏向
個性和對公司的興趣,希望可以找到志同道合的人作為骨幹,並表示之後還會有電話二面
。
隔天就收到北京的 SW 主管電話二面了,使用 WeChat 電談,對話內容比較偏向技術,聊
著自己也不知不覺變成北京腔 XD。由於不能現場展示投影片,針對碩論討論了挺長一段
時間,還被說了怎麼不趕緊投會議或期刊(因為錯過了 CVPR 2018 )。結尾我問了北京
部門狀況和公司未來的產品佈局。電談比較大的感想是最好提前準備履歷和面試備忘錄放
在面前,方便隨時提醒自己待會要說什麼,最好避免雙方有同時安靜的時刻(除非正在思
考)。一個禮拜後 HR 告知取得 offer ,經過溝通很努力的幫我爭取 bouns, COO 也和
我 WeChat 電談交換了雙方的意見,可以感受到他們對求職者的重視。
結果:Offer Get。
兆洋資訊
美商,首先是兩小時的上機考試,共八題,一題資料庫、一題 CSS flexbox 相關問題、
一題 JavaScript 實作題、一題 Node.js 功能實作,剩下四題都是演算法相關問題,在
LeetCode 大約是 Easy 等級。我很快就注意到這份題組名稱是 Full Stack Developer
,不禁懷疑自己投錯職位,詢問 HR 得知 AI 職位也是給這份試題,就默默開始埋頭苦寫
了。資料庫題目有點複雜,我沒能給出最佳 query ,浪費不少時間; flexbox 和 JS 都
屬於有經驗就會解的類型,輕鬆完成; Node.js 實作他有給雛形,基本不難;程式題都
用 C++ 解決,有題一直有部分測資沒通過,時間快到才發現看錯題目(掩面),其他題
目都算簡單,複雜度幾乎都在 O(N) ,也沒遇到 DP 題目。結束後由 HR 做了簡單的面試
,同樣自我介紹、問題和提出期望待遇,比較特別的是 HR 說因為員工訓練成本,入職後
會簽最低服務年限條款(一年),我本身不排斥這類合約。
兩天後接到美國主管打過來的電話二面,中文,談了快一小時(國際話費不貴嗎?!),
開頭誇了一頓,似乎是上機考成績和履歷不錯。之後開始介紹公司在美國的業務,不過和
我期望不同的是目前他們 CV 應用僅在文本識別場景,主管希望我也能參與 Web 開發,
說是他們的產品主力,看中我在這方面的經歷和技術,口頭確定了 offer ,薪水和年終
都給期望之上。同時也能外派去美國加州新建的據點,會處理好機票、簽證與住宿,期間
月薪會再多數千美金。和主管討論了公司未來方向和產品重心,對方很有誠意,因此雖然
工作內容和想像的有差異,內心也有點動搖,當天 HR 就寄了 offer 過來。
結果:Offer Get。
台達電子(台達研究院)
面試前需要上系統填寫履歷。 HR 準備了熱茶後就開始技術面試,兩位面試官分別來自
IoT 部門和 Life Science 部門(我投後者)。他們對我的碩論很感興趣,注重在我研
究的過程(選擇問題、改良點、架構設想、科學驗證),被問的東西包含:如何進一步的
提升模型性能(可改善處)、與比較模型的差異與理論根據、假設 Detection 目標種類
改變如何重構模型等,被誇了如果投頂會有機會上。也問了傳統電腦視覺和深度學習興起
後的變革與改進,我概括性描述了物件識別、追蹤、分割等領域的歷史和相關論文,同時
提到以前較難實現的領域如生成模型、NLP、VQA 等,但仍有領域是傳統方法主導(如
SLAM),人格特質部分被問在團隊中大多扮演的角色。再來我問了他們進公司的原因,兩
位剛好都是研替簽下去轉正的,側面證明他們對公司的喜愛,基本上也是個允許大膽研究
嘗試的好環境。另外介紹了我要投的部門,主要做醫療影像的 VQA 技術,可能因為剛才
誤打誤撞提到,面試官介紹時態度很好。最後因為氣氛不錯,斗膽向面試官們問了我可以
改進的地方,不過只被稱讚了很有熱忱有自信有條理,沒聽到缺點有點可惜(我不是抖M
)。
一個禮拜後 HR 來電談了半小時,大致幫我分析了薪資結構(大公司的年終分紅導向)、
福利和詢問我對工作內容的需求,多推薦了個 Machine Learning Data Scientist 職缺
,並約了二面時間(兩個職缺一起)。二面第一關為 Data Scientist 職缺的初面,面試
官是兩位工程師,聊天了解到他們部門偏結構資料和 AOI ,談到技術太投入結果超過時
間沒問到問題。第二關兩個職缺的主管都來了,自介完後被問了投台達的理由和期望環境
,自認回答得不錯。他們也提到目前開始嘗試建立 AI 平台部門,期望達到統整各部門技
術和讓跨部門合作更加容易,因此可選擇題目種類非常多,既可以深入研究一個主題,也
能多方嘗試增加技術廣度。面試過程很和樂,最後又和 HR 討論了期望待遇。數天後了解
待遇落點和結構,考量各種因素主動放棄職缺。
結果:主動結束流程。
Opus Microsystems(先進微)
目前面的職位描述裡和我碩論領域最貼近的公司。開場寫了一份題目很少的性向測驗,之
後兩位工程師(資深和技術 Leader )來和我閒聊,沒幾分鐘創辦人兼 CEO 的洪博士也
進來了,於是開始自我介紹。由於該公司有 3D 感測經驗,解說起 LiDAR 等點雲資料對
方皆是相當了解,問題也很刁鑽,包含研究上的思路和失敗經歷、細部架構替代方案的優
劣等,也問了一些我沒提到的部分,例如地勢起伏對 3D Point Cloud 的影響和改善和做
Voxelization 的各種方案優劣。然後聊到了黑客松時的團隊合作經驗,包含如何分工和
收穫等。
接下來跟 CEO 一對一面談,他介紹了公司的產品線、未來展望和戰略佈局,分析擴展市
場以及台灣公司在中國的競爭力問題,我本身對這方面非常有興趣,聊起來很是快樂。適
合我的部門有兩三個,包含了還沒正式成立的部分,公司正在轉型佈局期間,野心很大,
期間提到了不少管理層決策的判斷基準和思考方向,不知覺學了很多管理知識。他同時希
望算法工程師除了按照需求設計,也可以有自己的想法和基本的大局意識,該公司就是以
人數少而有力發展到現在。之後問了為何創立該公司,聽到了許多有趣的故事,包含最初
做創投的經歷、往 MEMS 領域創業的過程和波折、台灣和國外的投資視野差異、和股東的
股權利益糾葛等,又是一波知識洗禮。最後回到正題給出了期望待遇和詢問公司福利,總
共談了三小時多,意猶未盡。幾天後收到 HR 正式 offer ,待遇不錯。
結果:Offer Get。
Tomofun
知名寵物科技新創, Furbo 當年群眾募資挺有名的,現在也逐漸茁壯成長。我一按門鈴
就有狗狗熱情的過來迎接,到會議室路上一直嘗試舔我的手,超可愛!聽他們介紹是每天
會有值班的寵物,應該有控制數量避免公司大亂 XD,環境很明亮時尚,充滿各種新奇的
寵物玩具,開放式辦公環境。面試官人數挺多,兩位 AI 部門工程師、一位 RD 主管和一
位 HR,我開場就問了何時要出貓貓版本 Furbo ,對方主管笑著說會先等狗狗版市場開發
穩定再擴展,面試氣氛變得歡樂許多。工程師問了 YOLO 的實作過程和大型專案的合作經
驗, HR 問了演講經歷(如何有這個機會)、最有挑戰性的項目、團隊中扮演的角色、別
人對自己的看法、自己的缺點、喜歡的工作環境和不喜歡做的事情,大多問題都有事先準
備過所以自認回答得還算得體。主管表示這個職缺是研究導向,多數時間會研究指定
topic 的最新進展以及如何應用到產品上,基本上 Furbo 的可發展性還很高,包含動物
情緒分析、更精確的動作識別、精華影片合集等,因此部門會逐漸擴張。他們也介紹了目
前公司的主要市場歐美國家和收益增長情形,比我想像中的還高出許多,且背後有趨勢的
投資,近年內經營應該會繼續成長。
接下來只留了主管和 HR 談論待遇相關部分,我除了福利之外問了專案進行模式,一般計
畫會採用 Scrum 來進行,而 AI 部門由於偏研究,因此週期相對來說會比較長,跟其他
部門有蠻大差別。最後表示還有電話二面, HR 帶我逛了一圈公司,中間有看到影片出現
過的明星狗勾,忍住了跑過去摸的慾望離開了。一天後接到電話面試,主管對於我的表現
持正面態度,並且確認了期望待遇,我有表現出想進公司的意願,因此他們給出了不錯的
Package(包含分紅、股票等),並且幫我做了詳細的收益分析,感受到很大的誠意。很
快地就收到正式 Offer ,後來還接到趨勢創辦人張明正電話,小談了一下 Tomofun 團隊
,老實說受寵若驚。
結果:Offer Get。
浩鑫電腦
面試前有要求填相關資料寄 Email 給 HR,包含針對專業領域的自我推薦、個性自評和期
望工作內容等。開場簽了個資使用同意書,第一關是 HR 面試,對方親和力很強且相當健
談,談了期望工作內容、公司類型和大篇幅的個人經歷以及專業技能,也問了偏好有資深
工程師帶還是全新團隊成為骨幹,這位 HR 很擅長引導和切換問題,談起來相當愉快。
第二關是技術主管面試,主管是發過 CVPR 的前輩,對電腦視覺領域相當熟稔,面試部門
主要以人臉識別為主軸,問題包含:對當前人臉識別模型或演算法的介紹、基於傳統電腦
視覺方法和基於深度學習方法的人臉識別比較與差異、對於新的人臉需要多少資料才能學
習、假設有充足的運算資源,從無到有建置一個人臉辨識系統的過程、承上題,該系統潛
在的其他應用等。問題都是繞著人臉識別,因此只要對這領域有經驗基本上都能流暢回答
,甚至舉一反三。這關過程有點像做研究時的腦力激盪,個人認為挺有趣,隨著問答進展
越能順暢表達想法,另外有提到我的 Web 經歷會是加分項(有較多與後端串接部分)。
總過程大約兩個小時半,後續因為個人時間因素(已超過我設的面試期限)取消。
結果:時間因素中止。
未來市
新創公司,佈局挺大,內容無法透露太多,經過了三關面試(主管、CTO、HR),技術問
題包含:假設缺少大量資料,如何建構能用在實務上的深度學習模型、對某些電腦視覺問
題的應用設想等。主管和 CTO 對公司都充滿信心,有感覺到新創獨有的熱忱和鬥志。最
後 HR 介紹了公司待遇和福利,值得一提的是她溫和地提醒了我有時語速會太快,對此非
常感謝她,少數會告訴我改進點的面試官。整場總共談了三小時多,之後 HR 邀請我和創
辦人二面,不過因為個人時間因素(已到我設的面試期限)取消。
結果:時間因素中止。
Viscovery
第一關是電話面試,介紹了公司目前的產品走向(與我過去了解的 Viscovery 不同了)
和職務內容,之後自我介紹,在電談中解釋某些東西比想像中難,主要針對我論文模型有
比較深的提問,中間提到 Single Shot MultiBox Detector 討論了其優缺點。第二關到
現場面試,門口放了很多零食 XD,兩位工程師首先和我介紹公司真實現況,知無不言,
十分誠懇,請我不用怕放手問,還主動提起沒說的敏感問題,使我反而更有信任感。被問
了 Underfitting 和極大種類資料的處理問題,我回答分類樹、分類標籤、特徵清洗、調
整正規化手段等。接著是白板題,問題不難,偏測試細心程度、邏輯和設計層面的思想,
合格通過。後來又聊了很多面試的歷程心得,對方都不吝於分享,感覺是共事起來會很歡
樂的 Team !
第三關是主管和 PM 面試,主管詳述了公司轉型到落地產品的規劃,並統整了公司現有客
群、收入和計畫,我可以根據興趣選擇 Team (都有缺人)。被問了團隊分工經驗、如果
遇到不擅長的領域會如何開始著手、對客戶和 PM 和工程師三方溝通流程的看法等,對方
很親和好溝通。第四關是 HR ,確認了我對公司的看法以及告知薪資結構和福利,還分享
了公司失敗到重新站起來的過程,整體面試感覺很不錯。一天後收到正式 Offer ,待遇
很有誠意。
結果:Offer Get。
QNAP
知名 NAS 製造企業,首先是一小時半的筆試,包含了邏輯數學題、 Python 基礎(回答
輸出)、機器學習(PCA、SVM、梯度下降、Overfitting、BN、CNN)和性向測驗(題目不
多),自己寫起來感覺是全對沒問題,無法得知最終成績。第二關是技術面試,主管和我
有挺多技術共通點(尤其是在 Web 和 ML 方面),而且同樣熱衷參加開源活動(聽說整
個部門都是),聊起來很開心。他介紹了職位工作內容和相關部門,主要看重我技能樹點
的很廣這點,希望可以作為目前分工太細的 Team 的跨組工程師。比較有趣的是問我的
Lua 大多用在哪些地方,我不好意思地回答:寫遊戲腳本(ㄍㄨㄚˋ),主管聽了哈哈
大笑。
第三關是白板題,面試官為軟體架構師,題目不方便直接透露。一開始討論解法,我首先
表示使用 Hash Table 可以算出最佳解,時間複雜度 O(n) 。他問了 Hash Table 的缺點
,我回答空間成本和碰撞造成的效能損失不能兩全,他就假設輸入極大,運算單元無法負
荷 Hash Table ,此時最佳解是什麼?我很快提出了先進行排序,再二分搜尋,此時複雜
度為 O(nlogn),他又問如果輸入已經排序過,最佳解此時為何?我先提出應為最優解應
為 O(n) ,然而如果繼續對 n 個值二分搜尋複雜度依然會同上,所以瓶頸在於搜尋步驟
,直覺想到不必搜尋而記錄位置來比較(空間換取時間),複雜度就能達到最優。面試官
到此表示差不多可以寫在白板上,並建議我想好極端案例、需求,動筆後即開始計時。寫
的有點急漏檢查了空輸入情況,其他問題不大。後來因為耗時很短,又出了個加分題,主
要是做額外的字串處理要求。他結束時表示我解題速度太快,不知不覺節奏被我帶走 XD
,忘了提醒我要確認好題目「真正需求」(例如輸出格式),現實情況也很常出現雙方認
為的「需求」其實不對等的情況,學了寶貴的一課。和面試官一起討論思考的過程很棒,
個人認為是面試中最有趣的環節。最後是 HR 面試,介紹公司現狀和詢問我的期望待遇,
整場面試大約四小時多。大約一週後 HR 告知核薪的大致落點,由於那時差不多鎖定好期
望 Offer 了,我了解後就主動放棄該職缺。
結果:主動結束流程。
宜睿科技
機器人新創公司,進門就看到了搬運機器人和服務機器人,公司 Logo 很有科技時尚感。
面試官為主管和博士工程師,被問了黑客松中搜集資料的方法、標記自動化的想法等。他
們目前核心業務是可跨層移動的搬運機器人,目前在 DL 方面比較缺人,現階段需要提升
障礙物識別率和速度,並克服電梯內多人偵測,同時避免鏡子導致的誤判問題。後來額外
被主管問了 Linux Programing 和 MAC 層 CSMA 運作機制,我坦白不會(說起來也跟我
工作內容不相關…)。兩位都很親和務實,討論完待遇就表示明天就有結果,果然隔天就
收到正式 Offer ,很有效率。
結果:Offer Get。
中強光電
本來是投錯職位,因為他要求是博士學歷的資深主任級工程師,後來部門主管主動來電和
我談了一小時,了解他們也正在尋找年輕新血。團隊目前只有少數幾人,全都是資深精英
,主管本身是 Google 前員工,做自動駕駛和寫 GPU 的先驅,他表示看過履歷和
GitHub 覺得我挺有潛力,想邀請來新竹面試看看,聽他描述面試難度挺高,心中忐忑不
安。當地交通比想像中麻煩很多,搭到最近的地方還要走約半小時的路程(附近完全沒公
車)。
首先是線上英文測驗,類似多益,我犯了個大失誤是到閱讀測驗想看剩幾題,點到最後一
頁系統給我直接交卷… 大約少了 12 題的分數,提早了快 20 分鐘,有跟 HR 反應不過
大概沒什麼用。大公司常出現的性向測驗快速解決。緊接著 HR 面試,他對我只知道公司
有做投影機有些不滿(因為邀約有點匆忙沒能充分了解公司),向我介紹了公司發展至今
的三個部門:投影機、背光、 RD 研究中心。後者是新部門,為了拓展新領域所建,強調
了核心精神是「賺錢」和「快」,我所投的 Team 更是特種部隊,處理的都是最難的計畫
。然後是主管和工程師面試,不廢話直接大量問題開場,有印象的包含:
1. CNN 除了 CV 領域還有什麼應用,優點在哪
2. CNN 相較 MLP 的優勢
3. 舉出令人印象深刻的模型和其應用
4. L1 / L2 的差異
5. 機器學習方法中哪些不需要做 Normalization
6. FAST Corner Detection
7. 說明幾種 loss function 和其使用領域
8. Entropy 在機器學習可能有哪些應用
基本上都盡力回答,然而還是有部分題目沒答好(如 FAST、不需要 Normalization 的方
法等),主管表示勉強合格,工程師表示還不錯(不知道是不是安慰 QQ),他們主要想
把只看內容農場的半路出家 ML 求職者篩掉。接下來他們邊問履歷上的技能邊聊天,我詢
問了工作現狀,感覺時程真的挺趕,專案也都不簡單,加班保證能報加班費。最後再次和
HR 談話,他跟我特別提醒這個 Team 都是技術狂人,可以一天內做出其他工程師兩倍以
上的結果,也可以連續數天高強度工作,他表示也不希望進去之後才發現不適合,勞資雙
方都會很痛苦。最後談了期望待遇,得知可能要先在新竹學習一年,我婉轉表達了拒絕訊
息,因此到目前為止還沒收到回覆。
結果:無聲卡。
獵頭公司
特別提在後面,共有兩家獵頭和我聯絡過,算是比較新鮮的體驗,他們表示這領域由於沒
有多少真正的「資深」人員,因此有潛力的新人也會是目標。介紹接洽過幾間公司,某間
可惜的是由於對面流程問題後來沒有去成;另一間媒合還沒完成我就決定其他 offer 了
。認識獵頭好處是他們會給你求職上的不少經驗,甚至你在投履歷前可以詢問他們對公司
的看法或直接引薦,是個互惠互利的長期合作過程。個人認為這領域可以主動去聯絡獵頭
,不用害怕自己是新鮮人,收穫會比想像的大。
總結
針對不同類型和規模的公司有對應的面試技巧,事前準備好簡潔專業的履歷、適當複習
CS 基礎和特定領域知識、練習自我介紹,以及寫一張備忘錄,提醒自介的關鍵字和該問
的問題,這方面板上近期有系列文章可以參考。切記新創務必詢問 business model 、
客戶來源(有無客戶)、盈利來源(有無盈利)和背後資金(投資人?融資?)等,這關
係到你是否能在一段時間內和公司共同成長,對方通常也會樂於告知。大公司通常是底薪
不高偏向分紅,多關注 Project 進行流程、管理階層風格、部門重要性(賺錢部門?還
是舉無輕重的附屬部門?)。適當的表達對公司的瞭解和(發自內心的)喜歡點很重要,
另外個人認為對技術的熱忱很能打動面試官,這方面要從自己的履歷、經歷和口頭描述發
揮。
面試到後來會有些疲倦感,但收穫也很大,不斷的面試可以更好得知自己在市場上的價值
,藉由談話也能吸收很多養分(經過多間高手指教,論文改進版的靈感都來了 XD)。希
望這篇落落長的心得可以幫助到各位!
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.228.142.192
※ 文章網址: https://www.ptt.cc/bbs/Soft_Job/M.1541212374.A.3F3.html
※ 編輯: Jasonnor (36.228.142.192), 11/03/2018 10:35:52
見笑了,多年前的娛樂作品 Orz
得益於版上諸多心得,面試中有不少前輩也樂於分享 :)
這個聽起來好像比較有趣 XD
一個樂於學習的新人是最有潛力的!
Viscovery 小道消息面試前有主動了解過,面試中他們也不避諱和我分享事件始末
Appier 則是開的職缺描述為三年經驗以上 + NLP ,所以當時沒有考慮~
當時看到測驗也嚇到 XD,不過我對 Web 技術也不陌生,因此還是乖乖寫了
推測是有看過我的履歷,認為這些題目沒問題
... <看更多>