THE WITCHER 2 CÔNG BỐ 7 NHÂN VẬT MỚI
Đoàn làm phim The Witcher 2 đang đẩy nhanh tiến độ với việc bổ sung thêm bảy nhân vật mới để đồng hành cùng Henry Cavill. Cụ thể:
Adjoa Andoh (Bridgerton, Silent Witness) vào vai Nenneke - Một nữ tu sĩ ở Melitele và là người đứng đầu Nhà thờ Melitele.
Cassie Clare (Brave New World) vào vai Philippa Eilhart. Trong nguyên tác, cô là cố vấn của Vua Vizimir Đệ Nhị ở Redania và là lãnh đạo của Lodge of Sorceresses.
Liz Carr (Silent Witness) thủ vai Fenn, hoạt động như một điều tra viên hoặc thám tử. Trong khi đó, Simon Callow (A Room with A View, Four Weddings and a Funeral) đóng vai Codringher, cộng sự của Fenn.
Graham McTavish (Outlander, The Hobbit) vào vai Dijkstra - người đứng đầu lực lượng quân sự đặc biệt của Vương quốc Redania.
Kevin Doyle (Downton Abbey, Happy Valley) vào nhân vật Ba’lian. Theo thông tin từ The Hollywood Reporter, đây là một nhân vật mới hoàn toàn.
Chris Fulton (Bridgerton, Outlaw King) vào vai Rience - một pháp sư có nhiệm vụ tìm kiếm Ciri, cô đã biến mất sau vụ thảm sát ở Cintra.
Hiện tại, Netflix vẫn chưa công bố thời điểm The Witcher 2 công chiếu.
-----------------------------------
🔥 LIÊN HỆ CHÚNG MÌNH TẠI 🔥
📍YOUTUBE ► http://youtube.com/c/phephim
📍GROUP ► https://www.facebook.com/groups/1882192815406120/
📍EMAIL ► contact@pheteam.vn
dijkstra c 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最讚貼文
วันนี้จะขอรีวิวหนังสือ วิทยาการคำนวณชั้นม. ปลาย
วิชาที่ดึงความรู้ป.ตรีสายไอที
มาปูพื้นฐานให้เด็กๆ ทั่วประเทศได้เรียนกัน
.
ซึ่งวิทยาการคำนวณชั้นม.4-5-6 เรียนอะไร? ....โพสต์นี้มีคำตอบ
👉 ม.4 -> ปูพื้นฐานวิทย์คอม ได้แก่ เรียนแนวคิดเชิงคำนวณ, อัลกอริทึม, การทำโครงงาน
👉 ม.5 -> เรียน data science (วิทยาการข้อมูล หรือวิทยาศาสตร์ข้อมูล)
👉 ม.6 -> จะแนวรวมยำเทคโนโลยีให้น้องๆ รู้จัก ตั้งแต่สอนเป็นบล็อกเกอร์ รู้จัก AI, คลาวด์, IoT, AR, การเป็นพลเมืองดิจิตัล , กฏหมายดิจิตัล, การประกอบอาชีพไอที และอื่นๆ (ไม่ยากนะ)
.
===========
รีวิว ม.4
===========
วิทยาการคำนวณ ม.4 มีจำนวน 3 บท
🔥 +++บทที่ 1 แนวคิดเชิงคำนวณ +++++
บทนี้จะสอนแนวคิดเชิงคำนวณ (Computational Thinking) คืออะไร?
ซึ่งใครไม่รู้จักอาจงงเล็กน้อย ถึงปานกลาง
หรือเกิดคำถามคาใจ เรียนไปใช้ทำอะไรครับคุณครู
.
สำหรับแนวคิดเรื่อง Computational Thinking
(เรียกเป็นภาษาอังกฤษดีกว่า)
มีไว้เพื่อใช้แก้ปัญหาในแวดวง “วิทยาศาสตร์คอมพิวเตอร์” 🤩 🤩
จริงๆ แล้วมันไม่ใช่เรื่องแปลกใหม่แต่อย่างใด
.
ถ้าเราได้นั่งเรียนในระดับมหาวิทยาลัย
หรือได้ฝึกเขียนโปรแกรมไปเรื่อยๆ ก็จะใช้แนวคิดนี้โดยธรรมชาติ
อย่างไม่รู้ตัวอยู่แล้วครับ ไม่ต้องไปเรียนที่ไหน
.
นิยามของ Computational Thinking หรือแนวคิดเชิงคำนวณ
จะประกอบด้วยแนวคิดย่อย 4 อย่างดังนี้
1) Algorithm
2) Decomposition
3) Pattern recognition
4) Abstract thinking
.
หลายละเอียดแต่ละหัวข้อก็ตามนี้
👉 1) Algorithm ชื่อไทย “ขั้นตอนวิธี”
Algorithm คือลำดับขั้นตอนในการแก้ปัญหาหรือการทำงานที่ชัดเจน การคิดค้น อธิบายขั้นตอนวิธีในการแก้ปัญหาต่าง ๆ
.
ถ้าเคยเรียนตอนป.ตรี คงรู้จักคำนี้ดีไม่ต้องอธิบายมาก เช่น
-จะคำนวณหาพื้นที่เส้นรอบวง ต้องมีสเตปคำนวณอย่างไรบ้าง
-จะค้นหาข้อมูลแบบ binary search ต้องมีขั้นตอน 1,2,3 อย่างไรบ้าง
-จะหาเส้นทางที่ใกล้สุดในกราฟ ด้วยวิธี Dijkstra จะมีขั้นตอน 1,2,3 อย่างไรบ้าง
.
👉 2) Decomposition ชื่อไทยคือ “การแยกส่วนประกอบ และการย่อยปัญหา”
.
Decomposition เป็นการพิจารณาเพื่อแบ่งปัญหา หรืองานออกเป็นส่วนย่อย ทำให้สามารถจัดการกับปัญหาหรืองานได้ง่ายขึ้น พูดง่ายๆ เอาปัญหามาแยกย่อยออกเป็นส่วนๆ
.
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
เช่น การเขียนโปรแกรมแยกเป็นส่วนๆ แยกเป็นแพ็กเกจ แยกเป็นโมดูล
หรือทำระบบเป็น services ย่อยๆ หรือมองเป็น layer เป็นต้น
.
👉 3) Pattern recognition ชื่อไทยคือ “การหารูปแบบ”
.
Pattern recognition เป็นทักษะการหาความสัมพันธ์ที่เกี่ยวข้อง แนวโน้ม และลักษณะทั่วไปของสิ่งต่าง ๆ
.
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
เมื่อมีการทำงานของโปรแกรมที่หลากหลายแบบ
แต่ทว่ามีรูปแบบที่แน่นอนซ้ำๆ กัน
เราสามารถยุบโค้ดมาอยู่ในฟังก์ชั่นเดียวกันได้หรือไม่
หรือเขียนเป็นโปรแกรมวนลูป ให้อยู่ในลูปเดียวกัน เป็นต้น
.
👉 4) Abstract thinking ชือไทย “การคิดเชิงนามธรรม”
.
Abstract thinking เป็นกระบวนการคัดแยกคุณลักษณะที่สำคัญออกจากรายละเอียดปลีกย่อย ในปัญหา หรืองานที่กำลังพิจารณา เพื่อให้ได้ข้อมูลที่จำเป็นและเพียงพอในการแก้ปัญหา
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
-ก็เช่นการใช้ฟังก์ชั่น โดยเราแค่รู้รายละเอียดว่าฟังก์ชั่นทำงานอะไร ต้องการ input/ouput อะไร แล้วได้ return อะไรกลับมา ส่วนเนื้อหาไส้ในละเอียดเรามองไม่เห็น
.
🔥 +++++ บทที่ 2 การแก้ปัญหาและขั้นตอนวิธี +++++++
บททนี้เขาจะปูพื้นฐานอัลกอริทึมให้กับเด็กครับ ได้แก่
2.1 การแก้ปัญหาด้วยคอมพิวเตอร์
2.2 สอนให้รู้จักระบุข้อมูล input, ouput และเงื่อนไขของปัญหา
2.3 สอนการนำแนวคิด Computational Thinking มาออกแบบอัลกอริทึม
มี flow chart โผล่มาเล็กน้อย
2.4 สอนเรื่องการทำซ้ำ หรือก็คือสอนให้รู้จักวนลูปนั่นเอง
2.5 สอนอัลกอริทึมได้แก่ การจัดเรียงและค้นหาข้อมูล
ภาษาอังกฤษก็คือ อัลกอริทึมสำหรับ sort & search
.
🤓 สำหรับเรื่อง sort ก็จะมี
- selection sort (ชื่อไทย การจัดเรียงแบบเลือก)
- insertion sort (ชื่อไทย การจัดเรียงแบบแทรก)
.
🤓 สำหรับเรื่อง search ก็จะมี
-sequential search (ชื่อไทย การค้นหาแบบลำดับ)
-binary search (ชื่อไทย การค้นหาแบบทวีภาค)
.
ลืมบอกไป Big-O ตอนเรียนป.ตรี ก็โผล่ออกมาแว็บๆ นิดหน่อย
เด็กอาจสงสัยมันคืออะไร เป็นญาติอะไรกับ Big-C เปล่าเนี่ย
.
🔥 ++++ บทที่ 3 การพัฒนาโครงงาน ++++
บทนี้ถ้าสรุปสั้นๆ ก็สอนให้เด็กเขียนเสนอโครงงาน
หรือก็คือเขียน proposal เหมือนตอนเรียน ป. ตรีแหละครับ
.
ถ้าใครจำไม่ได้ ก็จะประมาณว่า การเขียนโครงงานต้องมี
บทที่ 1 บทนำ
บทที่ 2 หลักการ ทฤษฏี และงานที่เกียวข้อง
บทที่ 3 วิธีการดำเนินงาน
บทที่ 4 การทดลองและผลการทดลอง
บทที่ 5 สรุปผล วิเคราะห์ และข้อเสนอแนะ
.
===========
รีวิว ม.5
===========
ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
ซึ่งผมจะรีวิวเนื้อหาให้อ่านคร่าวๆ เนื้อหาแบ่งเป็น 4 บท
.
👉 ++++ บทที่ 1 - ข้อมูลมีคุณค่า +++++
.
Data science ในตำราเรียนใช้ชื่อไทยว่า "วิทยาการข้อมูล"
บทนี้จะกล่าวถึง Big Data หรือข้อมูลขนาดใหญ่ที่มีค่ามากมาย
และมีบทบาทมากในยุค 4.0 นี้ ทั้งภาครัฐและเอกชน
.
ถ้านึกไม่ออกก็นึกถึงเวลาเราเล่นเนตค้นหาใน Google จะพบข้อมูลมากมายมหาศาล ซึ่งเราสามารถนำมาใช้ในธุรกิจเราได้ ก็เพราะเหตุนี้ศาสตร์ด้านข้อมูล จึงมีบทบาทสำคัญอย่างมากอย่างยิ่งยวด
.
จึงไม่น่าแปลกใจที่ทำให้อาชีพนักวิทยาศาสตร์ด้านข้อมูล (ชื่ออังกฤษ data scientist) มันมีบทบาทสำคัญ และเป็นอาชีพที่มีเสน่ห์และน่าสนใจที่สุดยุคศตวรรษที่ 21
.
Data science ถ้าตามหนังสือเขาให้นิยามว่า
"เป็นการศึกษาถึงกระบวนการ วิธีการ หรือเทคนิค ในการนำข้อมูลจำนวนมหาศาล มาประมวลผล เพื่อให้ได้องค์ความรู้ เข้าใจปรากฏการณ์หรือตีความ ทำนายหรือพยากรณ์ ค้นหารูปแบบหรือแนวโน้มจากข้อมูล
และสามารถนำมาวิเคราะห์ต่อยอดเพื่อแนะนำทางเลือกที่เหมาะสม หรือใช้ในการตัดสินใจเพื่อประโยชน์สูงสุด"
.
สำหรับงาน Data science เขาจะมีกระบวนตามขั้นตอนดังนี้
- ตั้งคำถามที่ตนเองสนใจ
- เก็บรวบรวมข้อมูล
- การสำรวจข้อมูล
- การวิเคราะห์ข้อมูล (analyze the data)
- การสื่อสารและการทำผลลัพธ์ให้เห็นเป็นภาพ (communicate and visualize the results)
.
🤔 นอกจากนี้เขายังพูดถึง design thinking ...ว่าแต่มันคืออะไร?
ต้องบอกว่างานของนักวิทยาศาสตร์ข้อมูล
มันไม่ได้จบแค่เอาข้อมูลที่เราวิเคราะห์ได้แล้ว
มาโชว์ให้คนอื่นเข้าใจ
.
ยังต้องมีขั้นตอนการออกแบบแอพลิชั่น
ที่ต้องใช้ข้อมูลจากที่เราวิเคราะห์ไปนั่นเอง
ซึ่งคำว่า design thinking มันก็คือความคิดยิ่งนักออกแบบดีๆ นี้เอง
ซึ่งนักวิทยาศาสตร์ข้อมูลควรมีไว้เพื่อออกแบบแอพลิชั่นขั้นสุดท้าย
จะได้ตอบสนองความต้องการผู้ใช้
.
👉 ++++ บทที่ 2 การเก็บรวบรวมและสำรวจข้อมูล +++++
.
บทนี้ก็แค่จะปูพื้นฐาน
2.1 การเก็บรวบรวมข้อมูล
ในบทนี้จะพูดถึงข้อมูลที่เป็นลักษณะทุติยภูมิ
ที่หาได้เกลื่อนเน็ต และเราต้องการรวบรวมมาใช้งาน
2.2 การเตรียมข้อมูล (data preparation)
เนื้อหาก็จะมี
-การทำความสะอาดข้อมูล (data cleansing)
-การแปลงข้อมูล (data transformation)
ในม.5 ไม่มีอะไรมาก แต่ถ้าในระดับมหาลัยจะเจอเทคนิคขั้นสูง เช่น PCA
-การเชื่อมโยงข้อมูล (combining data)
2.3 การสำรวจข้อมูล (data exploration)
พูดถึงการใช้กราฟมาสำรวจข้อมูล เช่น
กราฟเส้น ฮิสโทแกรม แผนภาพกล่อง (box plot) แผนภาพแบบกระจาย (scatter plot)
พร้อมยกตัวอย่างการเขียนโปรแกรมดึงข้อมูลออกมาพล็อตเป็นกราฟจากไฟล์ csv (หรือ xls)
2.4 ข้อมูลส่วนบุคคล
สำหรับหัวข้อนี้ ถ้านักวิทยาศาสตร์ข้อมูลจะนำข้อมูลส่วนบุคคลมาใช้งาน ต้องเก็บเป็นความลับ ห้ามหลุด
.
ซึ่งประเด็นข้อมูลส่วนบุคคล ปัจจุบันมีก็มีร่างพรบ. คุ้มครองข้อมูลส่วนบุคคล ออกมาเรียบร้อยแล้ว
.
.
👉 ++++ บทที่ 3 การวิเคราะห์ข้อมูล ++++
.
แบ่งเป็น 2 ส่วน ได้แก่
.
3.1 การวิเคราะห์เชิงพรรณา (descriptive analytics)
เป็นการวิเคราะห์โดยใช้เลขที่เราร่ำเรียนมาตั้งแต่
- การหาสัดส่วนหรือร้อยละ
- การวัดค่ากลางของข้อมูล พวกค่าเฉลี่ย มัธยฐาน ฐานนิยม
- การหาความสัมพันธ์ของชุดข้อมูล (Correlation) พร้อมตัวอย่างการเขียนโปรแกรมให้ดูง่าย
.
.
3.2 การวิเคราะห์เชิงทำนาย (predictive analytics)
.
- มีการพูดถึงการทำนายเชิงตัวเลข (numeric prediction)
- พูดถึงเทคนิคอย่าง linear regression สมการเส้นตรงที่จะเอาไว้ทำนายข้อมูลในอนาคต
รวมทั้งพูดถึงเรื่อง sum of squared errors
ดูว่ากราฟเส้นตรงมันนาบฟิตไปกับข้อมูลหรือยัง (พร้อมตัวอย่างเขียนโปรแกรม)
- สุดท้ายได้กล่าวถึง K-NN (K-Nearest Neighbors: K-NN) เป็นวิธีค้นหาเพื่อนบ้านใกล้เคียงที่สุด K ตัว สำหรับงาน classification (การแบ่งหมวดหมู่)
***หมายเหตุ*****
linear regression กับ K-NN
นี้ก็คืออัลกอริทึมหนึ่งในวิชา machine learning (การเรียนรู้ของเครื่อง สาขาหนึ่งของ AI)
เด็กสมัยเนี่ยได้เรียนแหละนะ
.
.
👉 +++ บทที่ 4 การทำให้ข้อมูลเป็นภาพและสื่อสารด้วยข้อมูล +++
.
บทนี้ไม่อะไรมาก ลองนึกถึงนักวิทยาศาสตร์ หลังวิเคราะห์ข้อมูลอะไรมาเสร็จสรรพ เหลือขั้นสุดท้ายก็คือ การโชว์ให้คนอื่นดูด้วยการทำ data visualization (เรียกทับศัพท์ดีกว่า)
.
ในเนื้อหาก็จะยกตัวอย่างการใช้ แผนภูมิแท่ง,กราฟเส้น, แผนภูมิวงกลม, แผนการกระจาย
.
สุดท้ายที่ขาดไม่ได้ก็คือการเล่าเรื่องจากข้อมูล (data story telling) พร้อมข้อควระวังเวลานำเสนอข้อมูล
.
.
.
***หมายเหตุนี้ ***
😗 ภาษาโปรแกรมที่ตำราเรียน ม.5 กล่าวถึง และยกตัวอย่างมาให้ดู
ก็ได้แก่ python กับภาษา R
.
สำหรับภาษา R หลายคนอาจไม่คุ้น
คนจบไอทีอาจคุ้นกับ python มากกว่า
แต่ใครมาจากสายสถิติจะคุ้นแน่นอน
เพราะภาษา R นิยมมากในสายงานสถิติ
และสามารถนำมาใช้ในงาน data science ได้ง่ายและนิยมไม่แพ้ python
.
แต่ถ้าคนจาก data science จะขยับไปอีกสายหนึ่งของ AI
ก็คือ deep learning (การเรียนรู้เชิงลึก)
python จะนิยมแบบกินขาดครับ
.
===========
รีวิว ม.6
===========
เนื้อหาแบ่งเป็น 4 บท
👉 บทที่ 1 จะออกแนวสอนการเขียนบล็อก เพื่อเป็นบล็อกเกอร์
เนื้อหา ประกอบด้วย
1.1 องค์ประกอบและรูปแบบพื้นฐานในการสื่อสาร
1.1 เทคนิคและวิธีการแบ่งปันข้อมูล
1.1 ข้อควรระวังในการแบ่งปันข้อมูล
👉 บทที่ 2 อันนี้เด็ดดี
2.1 พูดถึงปัญญาประดิษฐ์ (AI), machine learning, deep learning
2.2 พูดถึงการประมวลผลแบบคลาวด์ (clound computing)
2.3 พูดถึง IoT (Internet of Things: IoT) อินเตอร์เน็ตของสรรพสิ่ง มียกตัวอย่าง smart city
2.4 เทคโนโลยีเสมือนจริง กลาวถึงเรื่อง AR ( Augmented Reality: AR) กับ VR (Virtual Reality: VR)
มีแถมเรื่อง block chain กับ quantum computer
.
แต่เนื้อหาเป็นการเกริ่นๆ เฉยๆ ไม่ได้ลงลึกอะไรมากแบบมหาลัยนะครับ
.
👉 บทที่ 3 พูดถึงการเป็นพลเมืองดิจิทัล
เนื้อหาประกอบไปด้วย
3.1 การเป็นพลเมืองดิจิทัล
3.2 การป้องกันตนเองและผู้อื่น
3.3 กฏหมายและมารยาทในสังคมดิจิทัล
.
👉 บทที่ 4 อาชีพในยุคดิจิทัล
เนื้อหาจะประกอบด้วย
4.1 อาชีพด้านเทคโนโลยีสารสนเทศและการสื่อสาร
4.2 การเปลี่ยนแปลงของเทคโนโลยีกับสังคมและอาชีพ
4.3 ผลกระทบของเทคโนโลยีกับอาชีพ
4.4 การทำงานร่วมกับเครื่องจักรและระบบอัตโนมัติ
สรุปแล้วเนื้อหาม.6
ตามความเห็น อ่านแล้วง่าย มันแค่เป็นการอธิบายภาพ
แต่ถ้าเป็นม.4 กับ ม.5 จะหนักกว่าหน่อย
.
ส่วนเนื้อหา ม.1 ม.2 ม.3 เดี่ยวมาเล่าให้ฟัง
แอบกระซิบบอกมี Python ด้วยแหละ
.
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai programmer
👀 อ้างอิง
- วิทยาการคำนวณม.4
- วิทยาการคำนวณม. 5
- วิทยาการคำนวณม.6
.
.
++++++++++++++++++++++++++++=
ทิ้งท้ายในเมื่อ ม.6 มีพูดถึง AI หรือปัญญาประดิษฐ์
เผื่อน้องๆ สนใจอยากศึกษาเชิงลึก เป็นการปูพื้นฐานเรียนต่อมหาลัยจะได้ไม่งง
+++++ขอประชาสัมพันธ์ (ขายของ)
📔 หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก" เข้าใจได้ด้วยเลขม. ปลาย (เนื้อหาภาษาไทย)
.
ถ้าสนใจสั่งซื้อเล่ม 1 ก็สั่งซื้อได้ที่ (เล่มอื่นๆ กำลังทยอยตามมา)
👉 https://www.mebmarket.com/web/index.php…
.
ขออภัยยังไม่มีเล่มกระดาษจำหน่าย มีแต่ ebook
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
dijkstra c 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
วันนี้จะขอรีวิวหนังสือ วิทยาการคำนวณชั้นม. ปลาย
วิชาที่ดึงความรู้ป.ตรีสายไอที
มาปูพื้นฐานให้เด็กๆ ทั่วประเทศได้เรียนกัน
.
ซึ่งวิทยาการคำนวณชั้นม.4-5-6 เรียนอะไร? ....โพสต์นี้มีคำตอบ
👉 ม.4 -> ปูพื้นฐานวิทย์คอม ได้แก่ เรียนแนวคิดเชิงคำนวณ, อัลกอริทึม, การทำโครงงาน
👉 ม.5 -> เรียน data science (วิทยาการข้อมูล หรือวิทยาศาสตร์ข้อมูล)
👉 ม.6 -> จะแนวรวมยำเทคโนโลยีให้น้องๆ รู้จัก ตั้งแต่สอนเป็นบล็อกเกอร์ รู้จัก AI, คลาวด์, IoT, AR, การเป็นพลเมืองดิจิตัล , กฏหมายดิจิตัล, การประกอบอาชีพไอที และอื่นๆ (ไม่ยากนะ)
.
===========
รีวิว ม.4
===========
วิทยาการคำนวณ ม.4 มีจำนวน 3 บท
🔥 +++บทที่ 1 แนวคิดเชิงคำนวณ +++++
บทนี้จะสอนแนวคิดเชิงคำนวณ (Computational Thinking) คืออะไร?
ซึ่งใครไม่รู้จักอาจงงเล็กน้อย ถึงปานกลาง
หรือเกิดคำถามคาใจ เรียนไปใช้ทำอะไรครับคุณครู
.
สำหรับแนวคิดเรื่อง Computational Thinking
(เรียกเป็นภาษาอังกฤษดีกว่า)
มีไว้เพื่อใช้แก้ปัญหาในแวดวง “วิทยาศาสตร์คอมพิวเตอร์” 🤩 🤩
จริงๆ แล้วมันไม่ใช่เรื่องแปลกใหม่แต่อย่างใด
.
ถ้าเราได้นั่งเรียนในระดับมหาวิทยาลัย
หรือได้ฝึกเขียนโปรแกรมไปเรื่อยๆ ก็จะใช้แนวคิดนี้โดยธรรมชาติ
อย่างไม่รู้ตัวอยู่แล้วครับ ไม่ต้องไปเรียนที่ไหน
.
นิยามของ Computational Thinking หรือแนวคิดเชิงคำนวณ
จะประกอบด้วยแนวคิดย่อย 4 อย่างดังนี้
1) Algorithm
2) Decomposition
3) Pattern recognition
4) Abstract thinking
.
หลายละเอียดแต่ละหัวข้อก็ตามนี้
👉 1) Algorithm ชื่อไทย “ขั้นตอนวิธี”
Algorithm คือลำดับขั้นตอนในการแก้ปัญหาหรือการทำงานที่ชัดเจน การคิดค้น อธิบายขั้นตอนวิธีในการแก้ปัญหาต่าง ๆ
.
ถ้าเคยเรียนตอนป.ตรี คงรู้จักคำนี้ดีไม่ต้องอธิบายมาก เช่น
-จะคำนวณหาพื้นที่เส้นรอบวง ต้องมีสเตปคำนวณอย่างไรบ้าง
-จะค้นหาข้อมูลแบบ binary search ต้องมีขั้นตอน 1,2,3 อย่างไรบ้าง
-จะหาเส้นทางที่ใกล้สุดในกราฟ ด้วยวิธี Dijkstra จะมีขั้นตอน 1,2,3 อย่างไรบ้าง
.
👉 2) Decomposition ชื่อไทยคือ “การแยกส่วนประกอบ และการย่อยปัญหา”
.
Decomposition เป็นการพิจารณาเพื่อแบ่งปัญหา หรืองานออกเป็นส่วนย่อย ทำให้สามารถจัดการกับปัญหาหรืองานได้ง่ายขึ้น พูดง่ายๆ เอาปัญหามาแยกย่อยออกเป็นส่วนๆ
.
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
เช่น การเขียนโปรแกรมแยกเป็นส่วนๆ แยกเป็นแพ็กเกจ แยกเป็นโมดูล
หรือทำระบบเป็น services ย่อยๆ หรือมองเป็น layer เป็นต้น
.
👉 3) Pattern recognition ชื่อไทยคือ “การหารูปแบบ”
.
Pattern recognition เป็นทักษะการหาความสัมพันธ์ที่เกี่ยวข้อง แนวโน้ม และลักษณะทั่วไปของสิ่งต่าง ๆ
.
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
เมื่อมีการทำงานของโปรแกรมที่หลากหลายแบบ
แต่ทว่ามีรูปแบบที่แน่นอนซ้ำๆ กัน
เราสามารถยุบโค้ดมาอยู่ในฟังก์ชั่นเดียวกันได้หรือไม่
หรือเขียนเป็นโปรแกรมวนลูป ให้อยู่ในลูปเดียวกัน เป็นต้น
.
👉 4) Abstract thinking ชือไทย “การคิดเชิงนามธรรม”
.
Abstract thinking เป็นกระบวนการคัดแยกคุณลักษณะที่สำคัญออกจากรายละเอียดปลีกย่อย ในปัญหา หรืองานที่กำลังพิจารณา เพื่อให้ได้ข้อมูลที่จำเป็นและเพียงพอในการแก้ปัญหา
⌨ ตัวอย่างการนำไปใช้ตอนเขียนโปรแกรม
-ก็เช่นการใช้ฟังก์ชั่น โดยเราแค่รู้รายละเอียดว่าฟังก์ชั่นทำงานอะไร ต้องการ input/ouput อะไร แล้วได้ return อะไรกลับมา ส่วนเนื้อหาไส้ในละเอียดเรามองไม่เห็น
.
🔥 +++++ บทที่ 2 การแก้ปัญหาและขั้นตอนวิธี +++++++
บททนี้เขาจะปูพื้นฐานอัลกอริทึมให้กับเด็กครับ ได้แก่
2.1 การแก้ปัญหาด้วยคอมพิวเตอร์
2.2 สอนให้รู้จักระบุข้อมูล input, ouput และเงื่อนไขของปัญหา
2.3 สอนการนำแนวคิด Computational Thinking มาออกแบบอัลกอริทึม
มี flow chart โผล่มาเล็กน้อย
2.4 สอนเรื่องการทำซ้ำ หรือก็คือสอนให้รู้จักวนลูปนั่นเอง
2.5 สอนอัลกอริทึมได้แก่ การจัดเรียงและค้นหาข้อมูล
ภาษาอังกฤษก็คือ อัลกอริทึมสำหรับ sort & search
.
🤓 สำหรับเรื่อง sort ก็จะมี
- selection sort (ชื่อไทย การจัดเรียงแบบเลือก)
- insertion sort (ชื่อไทย การจัดเรียงแบบแทรก)
.
🤓 สำหรับเรื่อง search ก็จะมี
-sequential search (ชื่อไทย การค้นหาแบบลำดับ)
-binary search (ชื่อไทย การค้นหาแบบทวีภาค)
.
ลืมบอกไป Big-O ตอนเรียนป.ตรี ก็โผล่ออกมาแว็บๆ นิดหน่อย
เด็กอาจสงสัยมันคืออะไร เป็นญาติอะไรกับ Big-C เปล่าเนี่ย
.
🔥 ++++ บทที่ 3 การพัฒนาโครงงาน ++++
บทนี้ถ้าสรุปสั้นๆ ก็สอนให้เด็กเขียนเสนอโครงงาน
หรือก็คือเขียน proposal เหมือนตอนเรียน ป. ตรีแหละครับ
.
ถ้าใครจำไม่ได้ ก็จะประมาณว่า การเขียนโครงงานต้องมี
บทที่ 1 บทนำ
บทที่ 2 หลักการ ทฤษฏี และงานที่เกียวข้อง
บทที่ 3 วิธีการดำเนินงาน
บทที่ 4 การทดลองและผลการทดลอง
บทที่ 5 สรุปผล วิเคราะห์ และข้อเสนอแนะ
.
===========
รีวิว ม.5
===========
ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
ซึ่งผมจะรีวิวเนื้อหาให้อ่านคร่าวๆ เนื้อหาแบ่งเป็น 4 บท
.
👉 ++++ บทที่ 1 - ข้อมูลมีคุณค่า +++++
.
Data science ในตำราเรียนใช้ชื่อไทยว่า "วิทยาการข้อมูล"
บทนี้จะกล่าวถึง Big Data หรือข้อมูลขนาดใหญ่ที่มีค่ามากมาย
และมีบทบาทมากในยุค 4.0 นี้ ทั้งภาครัฐและเอกชน
.
ถ้านึกไม่ออกก็นึกถึงเวลาเราเล่นเนตค้นหาใน Google จะพบข้อมูลมากมายมหาศาล ซึ่งเราสามารถนำมาใช้ในธุรกิจเราได้ ก็เพราะเหตุนี้ศาสตร์ด้านข้อมูล จึงมีบทบาทสำคัญอย่างมากอย่างยิ่งยวด
.
จึงไม่น่าแปลกใจที่ทำให้อาชีพนักวิทยาศาสตร์ด้านข้อมูล (ชื่ออังกฤษ data scientist) มันมีบทบาทสำคัญ และเป็นอาชีพที่มีเสน่ห์และน่าสนใจที่สุดยุคศตวรรษที่ 21
.
Data science ถ้าตามหนังสือเขาให้นิยามว่า
"เป็นการศึกษาถึงกระบวนการ วิธีการ หรือเทคนิค ในการนำข้อมูลจำนวนมหาศาล มาประมวลผล เพื่อให้ได้องค์ความรู้ เข้าใจปรากฏการณ์หรือตีความ ทำนายหรือพยากรณ์ ค้นหารูปแบบหรือแนวโน้มจากข้อมูล
และสามารถนำมาวิเคราะห์ต่อยอดเพื่อแนะนำทางเลือกที่เหมาะสม หรือใช้ในการตัดสินใจเพื่อประโยชน์สูงสุด"
.
สำหรับงาน Data science เขาจะมีกระบวนตามขั้นตอนดังนี้
- ตั้งคำถามที่ตนเองสนใจ
- เก็บรวบรวมข้อมูล
- การสำรวจข้อมูล
- การวิเคราะห์ข้อมูล (analyze the data)
- การสื่อสารและการทำผลลัพธ์ให้เห็นเป็นภาพ (communicate and visualize the results)
.
🤔 นอกจากนี้เขายังพูดถึง design thinking ...ว่าแต่มันคืออะไร?
ต้องบอกว่างานของนักวิทยาศาสตร์ข้อมูล
มันไม่ได้จบแค่เอาข้อมูลที่เราวิเคราะห์ได้แล้ว
มาโชว์ให้คนอื่นเข้าใจ
.
ยังต้องมีขั้นตอนการออกแบบแอพลิชั่น
ที่ต้องใช้ข้อมูลจากที่เราวิเคราะห์ไปนั่นเอง
ซึ่งคำว่า design thinking มันก็คือความคิดยิ่งนักออกแบบดีๆ นี้เอง
ซึ่งนักวิทยาศาสตร์ข้อมูลควรมีไว้เพื่อออกแบบแอพลิชั่นขั้นสุดท้าย
จะได้ตอบสนองความต้องการผู้ใช้
.
👉 ++++ บทที่ 2 การเก็บรวบรวมและสำรวจข้อมูล +++++
.
บทนี้ก็แค่จะปูพื้นฐาน
2.1 การเก็บรวบรวมข้อมูล
ในบทนี้จะพูดถึงข้อมูลที่เป็นลักษณะทุติยภูมิ
ที่หาได้เกลื่อนเน็ต และเราต้องการรวบรวมมาใช้งาน
2.2 การเตรียมข้อมูล (data preparation)
เนื้อหาก็จะมี
-การทำความสะอาดข้อมูล (data cleansing)
-การแปลงข้อมูล (data transformation)
ในม.5 ไม่มีอะไรมาก แต่ถ้าในระดับมหาลัยจะเจอเทคนิคขั้นสูง เช่น PCA
-การเชื่อมโยงข้อมูล (combining data)
2.3 การสำรวจข้อมูล (data exploration)
พูดถึงการใช้กราฟมาสำรวจข้อมูล เช่น
กราฟเส้น ฮิสโทแกรม แผนภาพกล่อง (box plot) แผนภาพแบบกระจาย (scatter plot)
พร้อมยกตัวอย่างการเขียนโปรแกรมดึงข้อมูลออกมาพล็อตเป็นกราฟจากไฟล์ csv (หรือ xls)
2.4 ข้อมูลส่วนบุคคล
สำหรับหัวข้อนี้ ถ้านักวิทยาศาสตร์ข้อมูลจะนำข้อมูลส่วนบุคคลมาใช้งาน ต้องเก็บเป็นความลับ ห้ามหลุด
.
ซึ่งประเด็นข้อมูลส่วนบุคคล ปัจจุบันมีก็มีร่างพรบ. คุ้มครองข้อมูลส่วนบุคคล ออกมาเรียบร้อยแล้ว
.
.
👉 ++++ บทที่ 3 การวิเคราะห์ข้อมูล ++++
.
แบ่งเป็น 2 ส่วน ได้แก่
.
3.1 การวิเคราะห์เชิงพรรณา (descriptive analytics)
เป็นการวิเคราะห์โดยใช้เลขที่เราร่ำเรียนมาตั้งแต่
- การหาสัดส่วนหรือร้อยละ
- การวัดค่ากลางของข้อมูล พวกค่าเฉลี่ย มัธยฐาน ฐานนิยม
- การหาความสัมพันธ์ของชุดข้อมูล (Correlation) พร้อมตัวอย่างการเขียนโปรแกรมให้ดูง่าย
.
.
3.2 การวิเคราะห์เชิงทำนาย (predictive analytics)
.
- มีการพูดถึงการทำนายเชิงตัวเลข (numeric prediction)
- พูดถึงเทคนิคอย่าง linear regression สมการเส้นตรงที่จะเอาไว้ทำนายข้อมูลในอนาคต
รวมทั้งพูดถึงเรื่อง sum of squared errors
ดูว่ากราฟเส้นตรงมันนาบฟิตไปกับข้อมูลหรือยัง (พร้อมตัวอย่างเขียนโปรแกรม)
- สุดท้ายได้กล่าวถึง K-NN (K-Nearest Neighbors: K-NN) เป็นวิธีค้นหาเพื่อนบ้านใกล้เคียงที่สุด K ตัว สำหรับงาน classification (การแบ่งหมวดหมู่)
***หมายเหตุ*****
linear regression กับ K-NN
นี้ก็คืออัลกอริทึมหนึ่งในวิชา machine learning (การเรียนรู้ของเครื่อง สาขาหนึ่งของ AI)
เด็กสมัยเนี่ยได้เรียนแหละนะ
.
.
👉 +++ บทที่ 4 การทำให้ข้อมูลเป็นภาพและสื่อสารด้วยข้อมูล +++
.
บทนี้ไม่อะไรมาก ลองนึกถึงนักวิทยาศาสตร์ หลังวิเคราะห์ข้อมูลอะไรมาเสร็จสรรพ เหลือขั้นสุดท้ายก็คือ การโชว์ให้คนอื่นดูด้วยการทำ data visualization (เรียกทับศัพท์ดีกว่า)
.
ในเนื้อหาก็จะยกตัวอย่างการใช้ แผนภูมิแท่ง,กราฟเส้น, แผนภูมิวงกลม, แผนการกระจาย
.
สุดท้ายที่ขาดไม่ได้ก็คือการเล่าเรื่องจากข้อมูล (data story telling) พร้อมข้อควระวังเวลานำเสนอข้อมูล
.
.
.
***หมายเหตุนี้ ***
😗 ภาษาโปรแกรมที่ตำราเรียน ม.5 กล่าวถึง และยกตัวอย่างมาให้ดู
ก็ได้แก่ python กับภาษา R
.
สำหรับภาษา R หลายคนอาจไม่คุ้น
คนจบไอทีอาจคุ้นกับ python มากกว่า
แต่ใครมาจากสายสถิติจะคุ้นแน่นอน
เพราะภาษา R นิยมมากในสายงานสถิติ
และสามารถนำมาใช้ในงาน data science ได้ง่ายและนิยมไม่แพ้ python
.
แต่ถ้าคนจาก data science จะขยับไปอีกสายหนึ่งของ AI
ก็คือ deep learning (การเรียนรู้เชิงลึก)
python จะนิยมแบบกินขาดครับ
.
===========
รีวิว ม.6
===========
เนื้อหาแบ่งเป็น 4 บท
👉 บทที่ 1 จะออกแนวสอนการเขียนบล็อก เพื่อเป็นบล็อกเกอร์
เนื้อหา ประกอบด้วย
1.1 องค์ประกอบและรูปแบบพื้นฐานในการสื่อสาร
1.1 เทคนิคและวิธีการแบ่งปันข้อมูล
1.1 ข้อควรระวังในการแบ่งปันข้อมูล
👉 บทที่ 2 อันนี้เด็ดดี
2.1 พูดถึงปัญญาประดิษฐ์ (AI), machine learning, deep learning
2.2 พูดถึงการประมวลผลแบบคลาวด์ (clound computing)
2.3 พูดถึง IoT (Internet of Things: IoT) อินเตอร์เน็ตของสรรพสิ่ง มียกตัวอย่าง smart city
2.4 เทคโนโลยีเสมือนจริง กลาวถึงเรื่อง AR ( Augmented Reality: AR) กับ VR (Virtual Reality: VR)
มีแถมเรื่อง block chain กับ quantum computer
.
แต่เนื้อหาเป็นการเกริ่นๆ เฉยๆ ไม่ได้ลงลึกอะไรมากแบบมหาลัยนะครับ
.
👉 บทที่ 3 พูดถึงการเป็นพลเมืองดิจิทัล
เนื้อหาประกอบไปด้วย
3.1 การเป็นพลเมืองดิจิทัล
3.2 การป้องกันตนเองและผู้อื่น
3.3 กฏหมายและมารยาทในสังคมดิจิทัล
.
👉 บทที่ 4 อาชีพในยุคดิจิทัล
เนื้อหาจะประกอบด้วย
4.1 อาชีพด้านเทคโนโลยีสารสนเทศและการสื่อสาร
4.2 การเปลี่ยนแปลงของเทคโนโลยีกับสังคมและอาชีพ
4.3 ผลกระทบของเทคโนโลยีกับอาชีพ
4.4 การทำงานร่วมกับเครื่องจักรและระบบอัตโนมัติ
สรุปแล้วเนื้อหาม.6
ตามความเห็น อ่านแล้วง่าย มันแค่เป็นการอธิบายภาพ
แต่ถ้าเป็นม.4 กับ ม.5 จะหนักกว่าหน่อย
.
ส่วนเนื้อหา ม.1 ม.2 ม.3 เดี่ยวมาเล่าให้ฟัง
แอบกระซิบบอกมี Python ด้วยแหละ
.
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai programmer
👀 อ้างอิง
- วิทยาการคำนวณม.4
- วิทยาการคำนวณม. 5
- วิทยาการคำนวณม.6
.
.
++++++++++++++++++++++++++++=
ทิ้งท้ายในเมื่อ ม.6 มีพูดถึง AI หรือปัญญาประดิษฐ์
เผื่อน้องๆ สนใจอยากศึกษาเชิงลึก เป็นการปูพื้นฐานเรียนต่อมหาลัยจะได้ไม่งง
+++++ขอประชาสัมพันธ์ (ขายของ)
📔 หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก" เข้าใจได้ด้วยเลขม. ปลาย (เนื้อหาภาษาไทย)
.
ถ้าสนใจสั่งซื้อเล่ม 1 ก็สั่งซื้อได้ที่ (เล่มอื่นๆ กำลังทยอยตามมา)
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
ขออภัยยังไม่มีเล่มกระดาษจำหน่าย มีแต่ ebook
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0