電子書 (手稿e-book) (共261頁) (HK$199)
https://play.google.com/store/books/details?id=Fw_6DwAAQBAJ
Calculus 微積分系列︰ https://www.youtube.com/playlist?list=PLzDe9mOi1K8o2lveHTSM04WAhaGEZE7xB
適合 DSE 無讀 M1, M2,
但上左 U 之後要讀 Calculus 的同學收睇
由最 basic (中三的 level) 教到 pure maths 的 level,
現大致已有以下內容︰
(1) Concept of Differentiation 微分概念
(2) First Principle 基本原理
(3) Rule development 法則證明
(4) Trigonometric skills 三角學技術
(5) Limit 極限
(6) Sandwiches Theorem 迫近定理
(7) Leibniz Theorem 萊布尼茲定理
(8) Logarithmic differentiation 對數求導法
(9) Implicit differentiation 隱函數微分
(10) Differentiation of more than 2 variables 超過2個變數之微分
(11) Differentiation by Calculator 微分計數機功能
(12) Application of Differentiation - curve sketching 微分應用之曲線描繪
(13) Meaning of Integration 積分意義
(14) Rule of Integration 積分法則
(15) Trigonometric rule of Integration 三角積分法則
(16) Exponential, Logarithmic rule of integration 指數、對數積分法則
(17) Integration by Substitution 代換積分法
(18) Integration by Part 分部積分法
(19) Integration Skill : Partial Fraction 積分技術︰部分分式
(20) Integration by Trigonometric Substitution 三角代換積分法
(21) t-formula
(22) Reduction formula 歸約公式
(23) Limit + Summation = Integration 極限 + 連加 = 積分
(24) Application of Integration – Area 積分應用之求面積
(25) Application of Integration – Volume 積分應用之求體積
(26) Application of Integration – Length of curve 積分應用之求曲線長度
(27) Application of Integration – Surface area 積分應用之求表面積
(28) L’ Hospital rule 洛必達定理
(29) Fundamental Theorem of Integral Calculus 微積分基礎原理
(30) Calculus on Physics 微積分於物理上的應用
(31) Calculus on Economics 微積分於經濟上的應用
(32) Calculus on Archeology 微積分於考古學上的應用
之後不斷 updated,大家密切留意
------------------------------------------------------------------------------
Pure Maths 再現系列 Playlist: https://www.youtube.com/playlist?list=PLzDe9mOi1K8os36AdSf64ouFT_iKbQfSZ
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
HKDSE Mathematics 數學天書 訂購表格及方法︰
http://goo.gl/forms/NgqVAfMVB9
------------------------------------------------------------------------------
Blogger︰ https://goo.gl/SBmVOO
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
------------------------------------------------------------------------------
「lnx積分證明」的推薦目錄:
- 關於lnx積分證明 在 Herman Yeung Youtube 的精選貼文
- 關於lnx積分證明 在 Herman Yeung Youtube 的最佳貼文
- 關於lnx積分證明 在 Herman Yeung Youtube 的最佳解答
- 關於lnx積分證明 在 Re: [微積] 請問一個最基本的問題lnx - 看板Math 的評價
- 關於lnx積分證明 在 求ln(x) 的積分(配微分法) - YouTube 的評價
- 關於lnx積分證明 在 ln微分證明、ln偏微分、ln積分公式在PTT/mobile01評價與討論 的評價
- 關於lnx積分證明 在 ln微分證明、ln偏微分、ln積分公式在PTT/mobile01評價與討論 的評價
- 關於lnx積分證明 在 [問卦] 怎麼證明1/x的積分是ln(x) | Gossiping 看板| PTT 網頁版 的評價
lnx積分證明 在 Herman Yeung Youtube 的最佳貼文
電子書 (手稿e-book) (共261頁) (HK$199)
https://play.google.com/store/books/details?id=Fw_6DwAAQBAJ
所用技術︰ https://youtu.be/HIk-qFac5bs
------------------------------------------------------------------------------
Calculus 微積分系列︰ https://www.youtube.com/playlist?list=PLzDe9mOi1K8o2lveHTSM04WAhaGEZE7xB
適合 DSE 無讀 M1, M2,
但上左 U 之後要讀 Calculus 的同學收睇
由最 basic (中三的 level) 教到 pure maths 的 level,
現大致已有以下內容︰
(1) Concept of Differentiation 微分概念
(2) First Principle 基本原理
(3) Rule development 法則證明
(4) Trigonometric skills 三角學技術
(5) Limit 極限
(6) Sandwiches Theorem 迫近定理
(7) Leibniz Theorem 萊布尼茲定理
(8) Logarithmic differentiation 對數求導法
(9) Implicit differentiation 隱函數微分
(10) Differentiation of more than 2 variables 超過2個變數之微分
(11) Differentiation by Calculator 微分計數機功能
(12) Application of Differentiation - curve sketching 微分應用之曲線描繪
(13) Meaning of Integration 積分意義
(14) Rule of Integration 積分法則
(15) Trigonometric rule of Integration 三角積分法則
(16) Exponential, Logarithmic rule of integration 指數、對數積分法則
(17) Integration by Substitution 代換積分法
(18) Integration by Part 分部積分法
(19) Integration Skill : Partial Fraction 積分技術︰部分分式
(20) Integration by Trigonometric Substitution 三角代換積分法
(21) t-formula
(22) Reduction formula 歸約公式
(23) Limit + Summation = Integration 極限 + 連加 = 積分
(24) Application of Integration – Area 積分應用之求面積
(25) Application of Integration – Volume 積分應用之求體積
(26) Application of Integration – Length of curve 積分應用之求曲線長度
(27) Application of Integration – Surface area 積分應用之求表面積
(28) L’ Hospital rule 洛必達定理
(29) Fundamental Theorem of Integral Calculus 微積分基礎原理
(30) Calculus on Physics 微積分於物理上的應用
(31) Calculus on Economics 微積分於經濟上的應用
(32) Calculus on Archeology 微積分於考古學上的應用
之後不斷 updated,大家密切留意
------------------------------------------------------------------------------
Pure Maths 再現系列 Playlist: https://www.youtube.com/playlist?list=PLzDe9mOi1K8os36AdSf64ouFT_iKbQfSZ
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
HKDSE Mathematics 數學天書 訂購表格及方法︰
http://goo.gl/forms/NgqVAfMVB9
------------------------------------------------------------------------------
Blogger︰ https://goo.gl/SBmVOO
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
------------------------------------------------------------------------------
lnx積分證明 在 Herman Yeung Youtube 的最佳解答
電子書 (手稿e-book) (共261頁) (HK$199)
https://play.google.com/store/books/details?id=Fw_6DwAAQBAJ
Calculus 微積分系列︰ https://www.youtube.com/playlist?list=PLzDe9mOi1K8o2lveHTSM04WAhaGEZE7xB
適合 DSE 無讀 M1, M2,
但上左 U 之後要讀 Calculus 的同學收睇
由最 basic (中三的 level) 教到 pure maths 的 level,
現大致已有以下內容︰
(1) Concept of Differentiation 微分概念
(2) First Principle 基本原理
(3) Rule development 法則證明
(4) Trigonometric skills 三角學技術
(5) Limit 極限
(6) Sandwiches Theorem 迫近定理
(7) Leibniz Theorem 萊布尼茲定理
(8) Logarithmic differentiation 對數求導法
(9) Implicit differentiation 隱函數微分
(10) Differentiation of more than 2 variables 超過2個變數之微分
(11) Differentiation by Calculator 微分計數機功能
(12) Application of Differentiation - curve sketching 微分應用之曲線描繪
(13) Meaning of Integration 積分意義
(14) Rule of Integration 積分法則
(15) Trigonometric rule of Integration 三角積分法則
(16) Exponential, Logarithmic rule of integration 指數、對數積分法則
(17) Integration by Substitution 代換積分法
(18) Integration by Part 分部積分法
(19) Integration Skill : Partial Fraction 積分技術︰部分分式
(20) Integration by Trigonometric Substitution 三角代換積分法
(21) t-formula
(22) Reduction formula 歸約公式
(23) Limit + Summation = Integration 極限 + 連加 = 積分
(24) Application of Integration – Area 積分應用之求面積
(25) Application of Integration – Volume 積分應用之求體積
(26) Application of Integration – Length of curve 積分應用之求曲線長度
(27) Application of Integration – Surface area 積分應用之求表面積
(28) L’ Hospital rule 洛必達定理
(29) Fundamental Theorem of Integral Calculus 微積分基礎原理
(30) Calculus on Physics 微積分於物理上的應用
(31) Calculus on Economics 微積分於經濟上的應用
(32) Calculus on Archeology 微積分於考古學上的應用
之後不斷 updated,大家密切留意
------------------------------------------------------------------------------
Pure Maths 再現系列 Playlist: https://www.youtube.com/playlist?list=PLzDe9mOi1K8os36AdSf64ouFT_iKbQfSZ
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
HKDSE Mathematics 數學天書 訂購表格及方法︰
http://goo.gl/forms/NgqVAfMVB9
------------------------------------------------------------------------------
Blogger︰ https://goo.gl/SBmVOO
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
------------------------------------------------------------------------------
lnx積分證明 在 求ln(x) 的積分(配微分法) - YouTube 的推薦與評價
ln(x ) dx = x ( ln(x ) - 1 ) + C = x ln(x ) - x + C. ... <看更多>
lnx積分證明 在 ln微分證明、ln偏微分、ln積分公式在PTT/mobile01評價與討論 的推薦與評價
证明Ln (x )和e^x的导数本段视频是证明(lnx)'=1/x和(e^x)'=e^x的第二个版本,强调这不是循环证明。 微分学的内容主要包括:极限的介绍,ε的含义,夹逼定理,导数, ... ... <看更多>
lnx積分證明 在 Re: [微積] 請問一個最基本的問題lnx - 看板Math 的推薦與評價
原文43
我覺得你不能用(反微分)積分這種東西來說,不然解釋半天你也不會相信
原 PO 就先假裝不知道這個對數 ln 指數 e 往下看吧 :)
f(x+h) - f(x)
導函數的定義是 f'(x) = lim ──────
h→0 h
既然 三角函數 多項式函數 我都可以帶這個定義來求導函數
那對數呢??
x
f(x) = log f'(x) = ???
a
當然囉帶入定義吧~
(x + h) x
log - log
a a
f'(x) = lim ───────────
h→0 h
因為對數律 相減 變成 相除
x + h
(────)
log x
a
f'(x) = lim ───────────
h→0 h
因為對數律 外面相乘 變成 次方
1
──
h h
(1 + ──)
= lim log x
h→0 a
h 1 x
感覺有點怪怪的 裡面有 ── , 外面只有 ── 。 那我讓他乘 ──
x h x
1
──
h h
x (1 + ──)
= lim ── log x
h→0 x a
↑ 反正乘 1 結果不會變 。 所以乘個 x 就要除個 x
利用對數律,把分子的 x 移進去次方裡面
x
──
h h
1 (1 + ──)
= lim ── log x
h→0 x a
這時候產生了一個非常神奇的東西 e
1/h
請問 lim (1 + h) = ???
h→0
有人說, 1 加上微量,然後在乘上無窮次方還是 1
有人說, 不對! 1 加上微量的無窮次方,然後算出來會變成 2
有人又說,錯錯錯! 1 + 微小擾動的無窮次方,會造成無限大
啾~~~~~~靜!誰才是對的呢?
這時候 Euler 就跑出來叫啦~
他說,這個簡單,利用二項式展開
m m m n m m m 2 m 3 m n
(1 + x) = Σ C x = C + C x + C x + C x + ... + C x + ...
n=0 n 0 1 2 3 n
C 就是算組合數
m m!
C = ───── ( ! 表示 階乘 )
n (m-n!)(n!)
所以依照二項式定理
1/h (1/h)! (1/h)! (1/h)! 2
(1 + h) = ──── + ───── (h) + ───── h + ...
0!(1/h)! 1!(1/h-1)! 2!(1/h-2)!
1 1 1
= ── + ── + ── + ...
0! 1! 2!
1 1 1 1 1 1
= ── + ── + ── + ── + ── + ── +...
0! 1! 2! 3! 4! 5!
= 2.718281828...
然而這個數字我們就簡略以 e 來代替
---回到這個式子
x
──
h h
1 (1 + ──)
= lim ── log x
h→0 x a
我可以知道上面那串可以寫成 e 這個常數
e
log
a 1 x
= ─── = ──── (其中 log 寫成自然對數 ln )
x x lna e
這下好啦 ! 我知道對數微分了
那我好像知道一件事情了!
n 1 n + 1
平常的多項式積分 ∫ x dx = ── x + C
n + 1
但是遇到 n = -1 就不能運算了!
1
還好今天我看到對數的微分等於 ──── (其中 ln a 又是常數)
x lna
那我要如何把 ln a 改成 1 呢 ???
很簡單! 只要把"真數"與"底數"寫成一樣的時候就會等於 1 了。
那我 ln a 的底數,就是 2.718281828.... = e
1
那我也把真數 a 令為 e 就會得到 ── 了
x
x 1
那我既然 D log = ────
a x lna
a = e 的時候??
x 1
D log = ──── ??
e x
1
d( ln x) = ─── dx
x
原PO的問題就迎刃而解啦!!!
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.118.234.83
... <看更多>