德勤發佈2020技術趨勢報告:五個新趨勢可引發顛覆性變革
北京新浪網 10-26 18:12
來源:產業智能官
「2020 年的趨勢將顛覆整個行業,並在未來十年重新定義業務,即使數字創新已成為各種規模企業的常規行為。」德勤管理諮詢新興技術研究總監兼政府及公共服務首席技術官 Scott Buchholz 在一份報告中如是說。
近日,《德勤 2020 技術趨勢報告》(中文版)正式發佈(以下簡稱《報告》),報告指出了五個可能在短期內引發顛覆性變革的關鍵新興趨勢:「數字孿生:連結現實與數字世界」;「架構覺醒」;「技術道德與信任」;「人感體驗平台」;「財務與 IT 的未來」。
值得注意的是,這是德勤第十一年發佈技術趨勢年度報告。今年的技術趨勢報告繼續在開篇回顧了 11 年來的技術趨勢發展,展示了技術趨勢隨時間推移的演進全過程以及最新宏觀科技力量作為業務轉型基礎帶來的共生效益和不久的未來的新興科技力量。與此同時,《報告》還指出,未來三大顛覆性技術(即環境體驗、指數智能和量子技術)正蓄勢待發,我們將在本世紀20年代末開始感受到它們的影響。
一、九大宏觀科技力量
隨著以技術為驅動的創新的空前擴張,一場高風險的「打地鼠」的競爭遊戲由此展開,企業利用技術保持先進的能力將決定其生死存亡。
過去十年內,數字化體驗、分析技術和雲技術為各項技術賦能,展現了他們自身的價值,已然成為眾多企業有效地推進戰略和新商業模式的核心基礎。接下來十年中,數字現實、認知技術和區塊鏈將成為企業變革的顛覆性驅動力。它們的應用範圍將越來越廣,各行各業的案例成倍增加。技術業務、 風險和核心系統現代化是驅動企業變革和創新的基礎技術,它們需要保持穩定、強勁、可持續發展。
基於此框架下討論新興技術,可以簡化技術進步對企業所造成的顛覆性影響。同時,圍繞九大宏觀科技力量衍生更多細分領域和更加細化的技術創新點和趨勢點。
十年前我們首次探索數字化體驗、分析技術和雲技術之時,只能看到其中的可能性,並不能確切地估測 它們的影響。現如今,這些技術已經為大家所熟知,並在對業務、運營模式和市場造成了顛覆性影響之 后,發展勢頭依舊迅猛。
(1)數字化體驗
數字化體驗依然是企業變革的重要驅動因素。實際上,在德勤 2018 年全球 CIO 調查報告 中,64% 的參與者表示接下來的三年裡,數字化技術將對他們的業務造成影響。在去年的超越營銷:體驗重塑中,我們已經審視了這一趨勢,企業正逐漸摒棄傳統意義上以獲客為核心的營銷模式,轉而致力於創造更多以人為本的互動——包括與其員工和商業夥伴的互動。
(2)分析技術
分析技術包括能夠提供深刻洞察的基本技術和工具。數據管理、數據治理以及數據運營體系這些重要因素不僅僅是人工智慧項目的核心基礎。同時,鑒於企業內對數據儲存、數據隱私和數據使用的嚴格要求,這些重要因素也是必須面對和考慮的重大策略點。
60%的首席信息官(CIO)表示,在未來的三年內, 數據和分析技術將對他們業務帶來影響。但這個問題正變得更具挑戰性。「靜止的數據」 和「使用的數據」這兩個久經考驗的概念被「動態數據」所連接,藉助工具和平台動態數據進而支持數據流、數據攝取、數據分類、儲存和訪問。值得欣喜的是,雲技術、核心系統重塑、認知技術和其它技術正在為異常複雜的挑戰帶來全新的解決方案。
(3)雲技術
雲技術已經全面深入企業。90% 的企業在使用基於雲技術的服務,並且這一比例有增無減。實際上,就信息技術領域的投資預算來看,接下來三年內對雲技術的投資會翻倍。正如我們 2017 年所預計的那樣,雲技術已經不僅僅只是作為基礎應用,它帶來了 「一切即服務」 的藍海,使任何 IT 能力都可以變成基於雲的服務供企業使用。在眾多企業當中,少數超大規模企業主宰了公有雲和雲技術服務市場,在雲技術的賦能下,為其它宏觀力量的進一步創新提供基礎和平台,例如分析技術、雲技術、區塊鏈、數字現實,以及未來的量子技術。
雲技術還驅動我們思考並重塑一些陳舊的企業管理和業務職能。
當今的顛覆性驅動力(即數字現實、認知技術和區塊鏈)都是由體驗、分析技術和雲技術發展而來。未 來十年,這些新的趨勢雖然不再新鮮,但它們將和過往的重大趨勢一樣,在人們持續深刻的理解和應用 中,推動重要的變革。
(4)數字現實
數字現實技術,包括 AR/VR 、混合現實、語音交互、語音識別、普適計算、360°全方位攝像和沉浸式技術等,幫助用戶突破鍵盤和屏幕的禁錮,與用戶感知無縫銜接,用戶可更加自然地參與互動。數字現實的目的是打破傳統的空間界限,讓人與底層技術進行自然、本能、甚至下意識的互動。
(5)認知技術
機器學習、神經網路、機器人流程自動化、機器人程序、自然語言處理、以及更廣泛的人工智慧領域等認知技術可能推動所有產業變革。這些技術將人機互動個性化、場景化,通過 定製化語言或圖像信息,驅動業務流程,實現無人值守。
企業對認知技術的需求大幅增長一一互聯網數據中心(IDC)預測 2022 年 企業此項支出將達 776 億美元,與此同時,信任和技術道德問題也迫在眉睫。
(6)區塊鏈
德勤 2019 年全球區塊鏈調查報告中,超過半數的參與者表示區塊鏈技術至關重要,較前一 年增長了 10% 。83% 的人能夠明確構思區塊鏈技術的實際應用,較前一年增長了 9% 。調查結果顯示,2019 年,企業已經不再討論「區塊鏈是否可行?」,轉而關注「我們該如何利用區塊鏈?」
金融服務和金融科技公司持續領航區塊鏈技術的發展,但其它領域也開始推行區塊鏈技術, 尤其是政府、生命科學與醫療健康、科技、媒體、通訊等領域。
再提技術業務、風險和核心系統重塑似乎有些枯燥無味,但不可否認,它們是業務的核心所在。企業在這些已經發展很成熟的領域,依然繼續進行著可觀的投資。綜合來看,正是因為它們不僅為數字化轉型、創新與增長提供了可靠的、可規模化的基礎,也是在分析技術、認知技術、區塊鏈等顛覆性技術成功投資的必要條件。
(7) 技術業務
隨著技術應用與業務戰略的融合,技術業務也在不斷發展。隨著企業更多地通過重塑 IT 來實現運營效率提升和與業務部門合作者一起進行價值創造,很多 IT 團隊通過實施促進跨業務協作的開發體系(如敏捷和 DevOps ),逐漸將傳統的項目制交付調整為產品化運營。
強大的技術功能讓企業更敏捷地響應技術驅動的市場和業務的變化。一隻強大的數字化技術運營團隊能夠幫助企業迅速回應技術對市場的影響以及相關業務挑戰。
(8)風險
在以創新為驅動力的時代,企業面臨的風險遠遠超越了傳統的網路風險、監管風險、運營風險及財務威。2019 年的 CEO 和風險管理調查報告指出,企業最大的風險廣泛涉及新顛覆性技術、創新、生態系統合作夥伴、企業品牌及名譽、文化等。對此,很多公司清楚地意識到他們還未對此類風險做好準備,或沒有想法在管理此類風險方面進行投資。
除合規和安全的必要要求,企業還面臨新興技術對產品、服務和商業目標的潛在影響,這些使得企業正在把更為廣泛的信任作為企業戰略。
(9)核心系統現代化
核心系統現代化體現了數字化轉型、用戶期望及數據密集型演算法給核心系統的前台、中台和後台帶來的持續性壓力。無論是在財務數字化、實時供應鏈,還是在客戶關係管理系統,核心系統都承載了關鍵業務流程。
在如今這個即時、持續和定製交互的時代,企業需要降低整體的技術負債。實現核心系統 現代化的成熟舉措,比如重塑現有的遺留系統,更新 ERP 系統及重寫其他系統,這些目前來講尤為重要。
二、未來三大顛覆性技術
隨著三大顛覆性技術(即數字現實、認知技術和區塊鏈)崛起,並準備在未來十年為業務做出重大貢獻 的同時,未來三大技術發展和創新的新星(環境體驗、指數型智能和量子技術)正蓄勢待發。我們將在 本世紀 20 年代末開始感受到它們的影響。
a:環境體驗
環境體驗展望了這樣一個構想:在未來,技術只是環境的一部分。計算設備的功率不斷增加,體積不斷縮小。這些越來越小的設備將我們的輸入從非自然的(指向、點擊和滑動) 演變為自然的(說話、手勢和思考),它們與我們的交互從被動的(回答問題)變成主動的(提出意料之外的建議)。
隨著設備變得無縫和無處不在,它們和我們越來越密不可分。想像未來的世界,一些微小的,已連接的,內容感知的設備被嵌入辦公室、家中或者其他地方,成為背景活動的一部分。例如,你如果在腦海中想「我要在一個小時之內出發去機場」,就能觸發一系列背景活動,包括安排航班值機,準備可供生物特徵識別的虛擬登機牌,將無人駕駛汽車目的地設置為正確的航站樓,將家中的智能系統狀態調為「離開」,以及暫停出差期間的快遞服務等等。
b:指數智能
指數智能建立在當今認知技術能力上。如今,機器智能能夠發現數據中蘊藏的規律,但是無法判斷這些規律是否有內在的意義。同時,它目前還缺乏識別和響應人類互動和情感的細微差別的能力。而且,機器智能的認知能力還非常有限,比如機器能夠打敗國際象棋大師,卻不能理解房間發生了火災需要逃跑。
未來有無限可能。隨著對語義和符號識別的理解,機器逐漸能從假想的相關中梳理出真實的因果關係。藉助來自人感訥驗平台的技術組合,我們的虛擬助手將越來越能夠識別並適應我們的情緒。隨著研究人員開發出更廣義的智能,指數智能將超越統計和計算的層面。我們敢說,最終,這將導致更有能力的人工智慧誕生。
c:量子技術
量子技術利用亞原子微粒的反直覺特性處理信息,進行新型計算,實現「不可非法侵入式」 交流,技術微型化等等。量子計算中,這些量子比特(或量子位)的特殊屬性有可能發生 指數型變化。通過操縱單個粒子,量子計算機將能夠解決某些高度複雜的問題,這些問題 對於目前的超級計算機來說,太大,太雜亂,包括從數據科學到材料科學。
隨著研究者們不斷突破技術限制,量子計算機將逐漸取代傳統的計算機。數據科學家將能 夠處理前所未有宏大的數據量,並從中獲取相關性信息。材料科學家利用量子比特模擬原 子,這是無法在傳統計算機上實現的。同時,在通訊、物流、安全、密碼學、能量等不同領域,我們都能預見無限可能。
為了幫助大家更好的理解各類前沿技術動態,基於宏觀科技力量及其可被預期的時間範圍,報告歸納整理了一張完整的統一化視圖。
三、五大關鍵新興趨勢
一)技術道德與信任
技術變革常態化的同時,贏得全方位的信任變得更具挑戰——但也充滿機遇。
隨著數字技術的出現,企業要用戶以新的更深層次的方式信任他們,過去是獲取用戶個人信息,現在則是通過數字痕迹追蹤用戶的線上行為。同時,技術引起的問題也經常成為新聞頭條,例如安全漏洞、不當或非法監視、個人信息濫用、虛假信息傳播、演算法歧視、缺乏透明度等等。這些事件導致利益相關方之間不信任(包括客戶、僱員、合作 夥伴、投資者和管理者),嚴重損害企業聲譽。的確,消費者對商家的信任正在逐漸下降,人們對公共機構的態度也越來越謹慎,員工則要求企業明確闡述其核心價值觀。
德勤 2020 年全球市場趨勢報告中提到,當今時代,品牌信任對企業來講尤為重要,關係到企業的方方面面。無論是客戶、監管機構,還是媒體,都期望品牌商在其開展業務的各個領域都是開放、誠信和始終如一,從產品生產、促銷活動、到員工文化和合作夥伴關係維護等。
被技術顛覆的企業,它的每一個方面都意味著可以贏得或失去任何一個客戶、員工、合作夥伴、投資者和/或監管機構信任的機會。如果領導者能夠充分貫徹企業價值觀和技術道德觀,努力履行「做好事」的承諾,企業就能夠與利益相關者建立長期牢固的信任關係。在這種情況下,信任就變成了一個全方位的 承諾,並且確保信任是企業的技術,流程,人員都在共同努力維護的基礎。
技術道德這一術語指的是不局限於或側重於任何 一項技術的綜合價值觀,這個價值觀是指導企業對技術使用的整體方法及通過部署這些技術驅動業務戰略和運營企業應考慮主動評估如何以符合公司宗旨和核心價值觀的方式使用技術。
在數字時代,信任是個複雜的議題,企業面臨著無數的生存威脅。雖然顛覆性技術通常會給企業帶來指數型增長,但僅憑技術卻無法建立長期信任。因此,領先企業們正在通過全方位的維持利益相關者所期望的高度信任。領先企業們正在嘗 試通過各種方式,來維持利益相關者所期望的高度信任。
人工智慧、機器學習、區塊鏈、數字現實和其它 新興技術正以前所未有的速度和深度融入我們的 曰常生活。企業該如何通過客戶、合作夥伴和員工使用這些技術來構建信任呢?
解讀企業價值觀。
如今,技術根植於業務,機器學習也驅動著業務決策和行為,因此,必須先了解企業的技術解決方案,才能進一步解讀和評價企業價值觀。數字化系統可以被設計用來減少偏差,讓企業能夠遵循自己的原則運 營。
保障措施可以防止用戶以不健康或不負責任的方式使用技術,從而幫助提高利益相關者的利益。例如,一家公司對可能成癮的遊戲強制限定遊戲時間和遊戲花費一個內容提供商提醒用戶關注信息來源的準確性;雲計算提供商在 戶超出其預算之前自動發出警報。
建立強大的數據基礎。
如果不能系統性地、統一地追蹤數據內容及來源,並確定可訪問數據的人員,就沒有辦法營造良好的信任環境。強大的數據基礎讓利益相關者擁有共同的願景, 為數據負責,採用安全的技術手段實現有效的數據管理。管理者需要讓利益相關者了解他們提供的數據將如何運用,此外,除非為了法律或監管的目的,在利益相關者要求時須刪除相關數據。
強化防護措施。
德勤 2019 年未來網路調查報告顯示,管理者為網路問題花費的時間越來越多,網路防禦體系意味著您要 保護您的客戶、員工和商業合作夥伴,讓他們遠離與他們——或者說你們——的價值觀不同的群體。從最開始就需要建立並實施網路安全風險策略略,並將其貫穿於商業運營和政策制定的全過程,這絕不僅僅是信息技術部門的問題。企業領導者應當與信息技術部門一起制定全面的數字安全風險策略,考慮安全、隱私、 誠信和保密等各方面,增強利益相關者的信任,提高企業競爭力和優勢。因此,需要評估企業的風險容忍度,明確弱點所在,並判斷企業最具價值的數據和系統,制定風險緩解策略和恢復計劃。
二)財務與 IT 的未來
IT 和財務領導者共同努力為創新融資尋找靈活的途徑。
德勤的研究發現,56% 的首席信息官(CIO)期望應用 Agile, DevOps 或類似的靈活 IT 交付模式,來提高 IT 的響應能力並激發更廣泛的創新的雄心。
但目前有些難以克服的障礙阻礙這些努力:資金的來源和分配。IT 的運營和開發流程正變得越來越靈活,更加側重產品,而財務部門仍舊按照過去數十年的方式來制定預算、融資和財報。結果顯而易見:IT 需求與財務流程之間的矛盾。若這個問題得不到解決,那麼它可能會破壞首席信息官(CIO)的創新計劃,乃至整個企業的戰略目標。
IT 對資金的需求與財務的漫長流程之間的矛盾並非形成於一夜之間。而是在過去十年中曰漸累積。雲技術和平台技術一步步地顛覆了傳統運營模式,迫使財務部門不得不重新評估財務管理方法。
《報告》指出這種變革體現在三方面:
從資本支出轉向運營支出
從在現場轉型到基於雲的系統,涉及大量的支出從資本支出轉移到運營支出。事實上,團隊一直都有一些資本支出和運營支出。新的準則是「誰開發誰管理」。從會計的角度而言,短期運營支出增長會影響季度財報。
衡量難以捉摸的投資回報率。
技術創新舉措通常是難以達到內部收益率預期的嘗試,可能產生正回報也可能不會。在財務及短期收益上, 創新投資通常不具備傳統 IT 項目的信心水平, 因此這類投資往往也很難通過標準管理流程獲得有力支持。在某些情況下,這會導致財務部門難以建立精確的流程,來跟蹤長期投資回報率。例如,對於無限期重複使用的平台這類的固定預算投資,跟蹤其投資回報率更是難上加難。
計算交付價值。
根據德勤《 2018 年全球首席信息官(CIO)調查報 告》,65% 的受訪者表示他們在評估 IT 投資時, 通常採用具體案例具體分析的方法,而不是遵循常規財報流程。顯然,在評估 IT 帶來的價值這件事上,首席信息官 (CIO )與首席財務官 (CFO)不在同一立場。
作為財務與未來的T趨勢的一部分,我們預計有更多首席信息官(CIO)、首席財務官(CFO)以及他們各自的團隊,將會積極探索解決這些及其他在融資、會計與財報上所面臨的挑戰的方法。
三)數字孿生技術
利用下一代數字攣生技術助力企業設計、優化和轉型。
當下,企業正以多種方式使用數字彎生技術。在汽車和飛機製造領域,數字彎生技術逐漸成為優化整個製造價值鏈和創新產品的重要工具;在能源領域,油田服務運營商通過獲取和分析大量井內數據,建立數字模型,實時指導鑽井作業在醫療保健領域,心血管研究人員正在為臨床診斷、教育、培訓,創造高模擬的人類心臟的數字彎生體;作為智慧城市管理的典型案例, 新加坡使用詳細的虛擬城市模型,用於城市規劃、維護和災害預警項目。
數字彎生可以模擬物理對象或流程的各個方面。它們可以展現新 產品的工程圖和尺寸,也可以展現從設計到消費者整個供應鏈中 所有子部件和相應環節——即」已建成「數字彎生,也可採用 「即維護」模式——生產車間設備的實物展現。模擬模型可以捕獲 設備如何操作,工程師如何維護,甚至該設備生產的產品如何與客戶關聯。數字彎生可以有多種形式,但它們無一例外都在捕獲和利用現實世界的數據。
數字孿生髮展勢頭迅猛,得益於快速發展的模擬和建模能力、更好的互操作性和物聯網感測器, 以及更多可用的工具和計算的基礎架構等。因此, 各領域內的大小型企業都可以更多地接觸到數字孿生技術。IDC 預測,到 2022 年,40% 的物聯網平台供應商將集成模擬平台、系統和功能來創建數字孿生,70% 的製造商將使用該技術進行流程模擬和場景評估。
與此同時,通過訪問大量數據,使得創建比以往更為詳細、更為動態化的模擬成為可能。對於數字孿生的長期用戶而言,這就好比從模糊的黑白快照過渡到彩色高清數碼照片一樣,從數字源中獲取的信息越多,最後呈現的照片就越生動逼真。
長期來看,若想要實現數字孿生技術的全部潛力, 可能需要集成整個生態圈內的系統和數據。創建 一個完整的客戶生命周期或供應鏈(囊括了一線供應商和其自身的供應商)的數字化模擬,可以提供富有洞察力的宏觀運營觀點,但仍然需要將外部實體整合到內部數字化生態系統內。直至今曰,大多數企業仍對點對點連接之外的外部集成感到不滿意。克服這種猶豫可能是一個長期挑戰, 但最終,所有的付出都將是值得的。未來,期望企業會利用區塊鏈打破信息孤島,繼而驗證信息並將其輸入數字孿生體中。這可以釋放先前無法訪問的大量數據,從而使模擬更加細節化、動態化、更具潛在價值。
四)人感體驗平台
通過Al、神經科學、人本設計重塑人機聯接。
人感體驗平台趨勢顛覆了傳統的設計方法,它首先確定我們想要實現的人性化和情感體驗,而後決定使用何種情感和 AI 技術組合能夠達成這一效果。企業將面臨的一大挑戰是,如何針對不同的客戶群體、員工群體和其它利益相關者,確定能引起他們共鳴和引發他們情緒的具體響應或行為,並進一步開發情感技術,使其能夠識別和複製某一段體驗中的特質。
在不久的未來,我們將會看到人們對人性化的技術需求曰益增長。在數字化革命進程中,我們目前進入到一個階段,就是每個人之間未必有 接,但每個人一定都與技術有聯結。我們正在消除流程和交互,直接與機器互動。因此,我們渴望我們正在迅速失去的東西:有意義的聯結。為此,我們期望技術能夠用更 加人性化,更人道化的方式跟我們互動。設計能夠滿足這一期望的技術需要對人的行為有更深刻的洞察,並不斷創新,以提高我們預測和響應人們需求的能力。不久的將來,人感體驗很有可能會帶來長久的、可持續的競爭優勢。
五)架構覺醒
演進架構師角色,從而轉變系統架構並支持業務 發展的速度。
越來越多的技術領導層和高管們逐漸意識到,如今,技術架構領域的科學在戰略上比以往任何時候都更加重要。事實上,為了在技術創新顛覆的市場中保持競爭力,已成立的企業需要不斷演 他們的架構一一這一過程可以從改變技術架構師在企業內扮演的角色開始。
這種轉變的目的非常明確:把經驗最豐富的架構師安排到最需要他們的地方——即加入到設計複雜技術的軟體開發團隊中。一旦這些架構師被重新部署和賦能,他們便可幫助簡化技術棧, 提升技術敏捷性,從而為新興企業獲得市場優勢。另外,他們還可以直接負責實現業務成果,解決架構難題。
此外,擁抱架構覺醒這一趨勢的企業將開始重新定義架構師角色,使其更具協作性、創新性,並能對利益相關者的需求做出回應。具有全局觀的架構師可能會發現,自己正在多部 門混合的項目團隊中,與專注於應用程序的架構師 以及來自 1T 和業務部門的同事共同作戰。未來,他們的使命將不僅是利用傳統的架構組件,還要利用顛覆性力量(如區塊鏈、AI、及機器學習)大胆創新。
資料來源:https://m.news.sina.com.tw/article/20201026/36690918.html
供應鏈物流管理 工程師 在 矽谷阿雅 Anya Cheng Facebook 的最佳貼文
疫情金融風暴,哪些技能最被需要?哪些職業職缺逆勢成長?
美國求職顧問公司LHH列出以下這些是被需要的技能,我做了一些為什麼被需要的猜測。
🔥最被需要的技能:
1. 分析和策略:風暴中,產業狀況不同,消費者態度和行為也改變了,因此很多企業要改變策略,並且用數據做決定。
2. 營運與物流:不出門,就是靠電商,而且供應鏈也大洗牌,需要營運與物流專家來管理。
3. 科學與創新:時代不一樣,不創新,等死?
4. 法務:公司必須做出太多改變,合約重擬、裁員、破產、併購、轉投資,每樣都要確定合法合規。
5. 安全管理:大家都遠距工作,資訊安全很重要。城市封城,避免闖空門,商店公司的安全也很重要。
6. 醫療:全世界都缺啊!這不用解釋了吧!
🔥最多職缺的職稱:
1. 卡車司機:電商、物流,就是靠司機來送。
2. 專案管理經理、營運經理:原本的案子因為疫情都延遲了、資源也改變,請專案經理來想辦法怎麼讓案子按時完成。供應鏈、物流產業改變,營運經理得想辦法改變營運模式。
3. 會計師、財務分析師:破產、節稅、財務整理、轉投資,都靠這兩個師。
4. 護士:辛苦了,醫護人員!
5. 軟體工程師:包括Java工程師、Network Engineer、System Engineer、.net Developer,在家上班,視訊、電商、員工管理軟體、客服軟體,都需要工程師來搞定。
6. 商業分析師:產業現況不同,得改變策略,先看數據再說!
7. 業務經理:開源節流,景氣再差,業務還是要跑業績才會來!
8. 人力資源:裁員、留職停薪、員工生病,都要人資來處理。
資料雖然是以美國為主的分析,但相信會影響全球經濟,不妨看看,超前部署!
你有什麼點子嗎?與其空想,不如試試看!假如你想做新創,你想想,你的競爭對手都受到金融風暴衝擊,你打敗他們的機會大幅增加;很多企業受到新冠病毒疫情衝擊,但也有金融、物流、電商、科技、醫療產業逆勢成長;你想建立人脈,因為金融風暴受影響的業界人士肯定現在對你的關心特別感動;你擔心失業率增加,但還有那麼多職位,你找工作,只需要一個!
資料來源: LHH。整理及製表:矽谷阿雅。
⭐️⭐️⭐️ 阿雅新書5/27上市!⭐️⭐️⭐️
__
❤️ 阿雅履歷範本借你用 https://bit.ly/2T6FX5S
❤️ 填人才表請阿雅幫忙留意工作 https://forms.gle/VAgPWLTWgmgx93z57
❤️ 需要職涯建議,粉專傳訊息給阿雅!
❤️ 追蹤阿雅IG @AnyaCheng0908
❤️ 加阿雅linkedin https://www.linkedin.com/in/anyacheng/ (幫阿雅按讚技能喔!)
❤️ 更多職涯分享在「慌世代拓荒時代」群組 https://www.facebook.com/groups/165581641033912
❤️ 如何談到更好的薪水 https://bit.ly/2UsoMee
❤️ 五分鐘讓矽谷獵頭找到你(上)https://bit.ly/2vuP5Is (下)https://bit.ly/3afc5d2
❤️ 履歷上該不該寫推薦人? https://bit.ly/2Wegv0g
❤️ 如何回答你的缺點是什麼?https://bit.ly/2Uhab5u
❤️ 想當產品行銷經理請三思 https://bit.ly/2ISCMIQ
❤️ 想自信推薦自己,卻被當成「職場假貨」…自我行銷和謙遜之間如何拿捏? https://bit.ly/34kqMKk (長按鼓掌可以拍多下喔!)
供應鏈物流管理 工程師 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
甲骨文預測十大雲端趨勢 九成IT任務將完全自動化
【CTIMES/SmartAuto 王岫晨 報導】 2020年03月09日 星期一
在正式邁入2020年之際,甲骨文預測未來技術和企業商業模式將發生以下十大變化:
預測1:90%的手動IT操作和資料管理任務將完全自動化
自主資料庫(Autonomous Database)的普及,將改變技術人員需大量時間處理的日常工作,例如備份、擴充、調校、監測和保護關鍵資訊系統。甲骨文預測,90%的手動IT操作和資料管理任務將在2025年完全自動化,工程師將有更多時間發展人工智慧和機器學習等先進技術。例如,自主學習系統可以橫跨多個應用程式自動收集資料,自動以視覺化方式,圖形、圖表和動畫等,呈現數百萬個資料點,讓身處業務部門的終端使用者不必再費心製作和研究傳統報表,能更輕鬆地找出資料中潛藏的趨勢、規律和關聯性。甲骨文相信,在雲端的推動下,這些先進技術將日益普及,走向主流。
預測2:雲端共用的敏感性資料將擴增600倍
如今,70%的企業都將重要業務資料儲存在雲端。其中大多數企業採用混合雲,也就是將一部分關鍵業務系統保留在本地部署環境中,而將大部分資料轉移至雲端。面對不斷升級的攻擊方式,確保資料和系統彈性對於企業至關重要。然而,由於網路安全人員嚴重短缺,企業沒有足夠的專業人才來確保安全性。攻擊者能夠輕易對未安裝修補程式的系統發起攻擊。因此,為了防範層出不窮的網路攻擊,企業的最佳選擇是部署自主系統,將進階安全功能融入所有層級——從應用、資料到晶片的IT基礎設施。
預測3:幾乎所有的企業應用都將包含某種形式的嵌入式AI技術
透過改變企業接收、管理和保護資料的方式,人工智慧正推動著企業智慧轉型。甲骨文表示,如今許多企業已經意識到,並開始積極部署AI技術以提高工作效率、生產力並降低成本。甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。這將協助企業高階主管和決策者更快速、深入地了解公司營運、員工、市場和客戶狀況。
預測4:絕大多數供應鏈應用將取決於區塊鏈、機器學習、物聯網等技術
如今智慧自動化系統運用於各行各業,推動系統設計、物流、製造、基礎設施等典範轉移。而在供應鏈領域,日益增加的客戶期望、不斷縮短的產品週期、各種新的法規和波動不定的需求正不斷挑戰傳統系統的極限,並推動採用新興技術。其中,區塊鏈建立匿名、不可篡改的去中心化、分散式和數位化事務記錄功能,也解決傳統供應鏈面臨的重大挑戰,使全球性的供應鏈,物料和產品在多個供應商、製造商、經銷商、運輸商和服務提供者間流通順暢。虛擬實境(VR)和擴增實境(AR)界面則可以為員工提供更高水準的沉浸式體驗,例如藉助3D的呈現方式,技術員可以更視覺化地查看設備與配置。語音助手可以查找產品資訊、報告生產進度,以及傳達來自IoT感測器關於當前狀況的分析。
預測5:流程的自動化將擁有更多個人化體驗
甲骨文認為,人工智慧和自主技術持續深入工作場所,簡化企業日常業務流程,讓業務人員專注於更有意義、更有價值的人際互動。例如,自動化工作流程可以追蹤求職者、處理新員工請求以完善整個招聘流程;據預測,2025年人工智慧和機器人將接管70%的招募工作。AI技術可以基於職位要求審查求職者背景,幫助人力資源團隊找到最合適的人選;聊天機器人可以與求職者溝通和安排面試。這些自動化功能將大幅減輕人力的日常負擔,讓HR團隊專注於招募符合企業文化的優秀人才。
預測6:80%的大城市將使用物聯網技術,開啟智慧城市計畫
物聯網技術的發展使社區得以變得更加人性化與靈活。截至2025年,80%的大城市將運用物聯網資料,開啟智慧城市計畫。長遠來看,物聯網技術能夠改善市民間的合作和信任,有助於打造更加團結的城市。隨著這些技術日益普及、成本不斷降低,許多社區將部署固定的監視器和可穿戴設備等智慧資源,進一步提高安全性和透明度。除了上述例子,智慧城市計畫還涵蓋彈性能源和智慧交通等領域。
預測7:資料科學自動化程度不斷提高
利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。幸運的是,隨著AI和機器學習技術不斷發展,越來越多的資料科學工作都將自動化,從而大幅提高技術人才的工作效率。此外,隨著AI系統不斷升級,它們將更有效地為業務用戶創造洞察並對結果加以解釋,進而讓資料科學家騰出時間專注於更有價值的工作。
預測8:AI機器的興起將催生出前所未有的職業
隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。另一方面,雖然自動化的興起將排除部分手動和重複性工作,但AI的普及同時也將創造全新工作機會及新的職業類型。2025年,機器處理的工作量將達到人類的兩倍。雖然自動化的興起可能會讓員工有所擔憂,但從長遠來看,它能夠促進全球經濟發展,讓人們專注於價值更高的工作,並提高人們的生活品質。
預測9:網路安全將隨著物聯網和人工智慧的廣泛應用變得更加複雜
機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。
預測10:80%的資料將與「物」相關
在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。
附圖:甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。
資料來源:http://www.ctimes.com.tw/DispNews/tw/2003091812QW.shtml