#電動車是替代性能源車輛而非環保能源車
#電動車是否環保取決於一個國家的發電體系是否健全
#但是台灣最主力的發電方式卻最排污最重的火力發電
#而且你知道充飽一顆電動車要消秏多少度電嗎
-
教士今天和大家聊一下近期吵很凶的電動車議題。
我們的政腐現在把空污通通丟給燃油車,然後把頭插進地上當一隻鴕鳥只用屁股對著大家說:電動車最環保。
那電動車真的很環保嗎?
-
現在台灣人開始注意到電動車,反正就覺得電動車要嘛就是在家插插頭,或是和gogoro一樣換個電池。
#可是有人去思考過充飽一顆電池要消秏多少電嗎?
-
-
如果要用單位去講,目前我們對電的用量單位大概就是「度」,而1度電=1kWh=每1000W使用一小時的能量。
舉個例,目前特斯拉全新的P100D,它的電池容量是100kWh
#也就是說不計算充電轉換消秏的能量充飽一顆電池是100度電
而特斯拉的官方數據是說一顆電池最多可以跑557公里,也就是說平均1度電能跑5.57公里的概念。
-
-
而台灣人平均每年每人用量電,以小家庭來講每個月平均夏季141度、冬季114度,就算是最扯的一個月平均也才300度。而充飽一顆P100D電池的電池的用電量就是一個人平均每個月的用電量,而你一個月會只跑557公里嗎?
-
-
台灣汽車總量大約7,980,568台,而假設平均每個人一個月開車只開300公里,那一個人平均下來每個月就增加了約54度的用電量(大約是正常很省電家庭一個月用量的1/3),我們抓50度就好。798萬台汽車通通變成電動車,一個月平均增加的秏電量就增加了3.99億度的電。
#而且這些都還是沒有把充電的消秏損失與轉換率算進去的計算方式
#而且教士一年平均開的里程是1萬5千公里
#也就是每個月1250公里
-
-
所以為什麼會有很多人說電動車環保呢?
第一: #那些人看不到火力發電的污染,而且只會拿一些很廢戰力極弱的"別的產業也會用電啊"的藉口來當口嘴的東西。
第二: #現在台灣的電動車數量還沒多到會影響主要電力供應,所以那些人就覺得電動車對生活用電無害。
第三: #因為那些人根本不知道充飽一顆電池要消秏多少電,所以就覺得電動車好環保。
-
-
我們不把電動車的生產過程那些有的沒有的污染算進去,單純就秏電量來說, #充飽一顆特斯拉的電池就等於一個人每個月平均用電量。 那你說電動車好環保嗎? 笑一笑。
-
-
-
緊接著,大家一定會想問,那gogoro呢?
一顆gogoro電池是30.3Ah,轉換成度大約就是1.37kWh,而一台gogoro要吃2顆電池,也就是說它是背著2.74kWh在跑。而它的平均里程大約能跑100公里,也就是說1度電大約可以跑36公里。
-
假設平均起來台灣人每個月只騎200公里的話,一個月大約增加5.5度的用電量,聽起來很省對吧?
#可是民國107年5月統計的機車掛牌量是1378萬台
#所以如果全部的二輪都變成電動車那一個月會增加7579萬度電的需求
#你覺得台灣的發電系統撐的下去嗎
#要不要再多蓋幾座火力發電廠來救空污和用電吃緊的問題呢
#而且以上的消秏量都是完全沒有把充電時的秏損與轉換率給算進去唷
-
-
-
當然,電車環保人士一定會想戰說電車的能量浪費比例比油車要好,那教士再和大家聊一下1度電與1公升汽油所產生的能量差異吧。
-
因為我們很難用"出力"去定義強與弱,所以就最直接的以能量產生的『粗熱值gross heating value』去做一個量化的比較。
1度電產生的能量大約是3.6MJ,轉換成KJ(千焦耳)是3600KJ。
1公升汽油產生的能量是43070KJ/千克,而汽油密度約 0.75g/ml,所以把千克換算下來一公升汽油大約能產生32302KJ。
有些電車車主會說油車能量轉換效率差,大約只有20~25%的轉換效率,而電車有60%。
-
白痴一點直接拿KJ去算,1公升汽油產生32302KJ*20%=6460KJ的能量,而1度電產生的3600KJ*60%=2160KJ。
#不管怎麼算都是汽油提供的能量大於電能啊
-
補充一下,有人會嘴說電動車產生的動能較低但卻能有更高的里程,事實上並非如此。
#教士一開始沒講的就是電動車供電充電時的電能秏損
#你真的以為充飽1度電就只要1度嗎
簡單的說,一度電是1kWh=1000W/小時,在直流系統中,瓦w=VA,也就是1000vAh。
教士舉一般的48V/20Ah=960vAh的電瓶來當例子,充飽一顆960vAh的電瓶,換算的公式就是:
容量 ÷ 1000 ÷ 轉換秏損 = 消秏度數(kWh)
而重點就在於那個轉換秏損,很多人都拿油車的概念在當電動車,都以為電動車容量多少就是用多少電, #但實際上充飽你電瓶的秏電量絕對大於你的電瓶容量。
這也是油車絕對不會發生的 #補充能量過程秏損
實際上電能秏損一直都存在,只是被那些假環保人士視而不見。 #你加油50公升就是50公升進油箱,最多誤差幾mml。 #但要充飽一顆電瓶所需要的能量絕對大於一顆電瓶本身的容量。
-
假設我們先不例入所謂的線材秏損、設備轉換或電阻三小有的沒有的,單純以80%的轉換效率來說。充飽一顆 48V/20Ah電瓶所需要消秏的電力就是 960 ÷ 1000 ÷ 0.8 = 1.2度。
#上面故意不提這個讓很多理盲的電動車嘴臉以為充1度電就是秏1度電
#實際上充飽一度電消秏的電力絕對大過一度電
一些電動車主喜歡說電能轉換動能有60%的功率,而汽油轉換只有20~25%,但你們這些人有把儲存秏損、轉換秏損、傳輸秏損以及自放電秏損這些算進去呢?
#沒有嘛
#而且我還沒有把gogoro換電站的電能消秏算進去哦
-
-
所以最後要說
油車電車沒啥必要要戰,但請電車車主不要太過自我感覺良好覺得自己是環保小尖兵,除非今天台灣的供電都是以核能或綠能為主,不然你真的離環保還有好大一段路啊。
不過當然,台灣電價便宜,一度電最高最高也才6.41塊,你充飽一次100度的電瓶也才641塊錢,當然無感。
但對台灣的供電網路呢?當你們沾沾自喜的在說自己的排碳量低於油車時可曾想過台灣這個地方的供電網路承受的了你們嗎
#以上電動車行駛里程與充電秏能都是極度美化的數字真實世界不可能的因為我連爬坡負重都沒列入
功率效率計算公式 在 徐國峰 HSU KUO FENG Facebook 的最讚貼文
【用Vector量化踩踏技術】
作者:羅譽寅;編輯:徐國峰
https://youtu.be/jOFxyuGWeoE
最近譽寅在專研我們最弱的一塊:功率訓練。他把功率訓練的相關知識消化吸收後,整理了接近兩萬字的稿子出來。今天完成了初稿,跟大家分享一下他的部分成果,也是我最有興趣的一塊:量化踩踏技術。
如果我們把曲柄當作時鐘來看,1點到5點之間為主要的「施力區」,在此區間內所施的力都能有效地為腳踏車產生動力,其中又以3點鐘方向產生的力矩最大(因為力臂最長);12點跟6點則分別是下/下死點,因為在這兩點沒有力臂,所以不管踩得多用力對前進都沒有幫助;至於後半段的7-11點,可說是踩踏技術優劣的分水嶺。
我們回到曲柄上以機械的角度來看,如果能夠對踏板進行360度均勻地施力當然最具效率,就像引擎一樣把動力平均施加到齒輪的每一個齒片。但實際上我們的腳天生就不適合這種運動模式。人類演化至今,發展出強壯的股四頭肌,再加上地心引力的關係,往下踩這個動作對於這雙腿來說可說是習以為常。但往上提又是另一回事了,除了負責上拉的肌群(在大腿上方的髂腰肌與腿後肌群)相對比較弱之外,還得要克服地心引力,所以要透過提拉來驅動後輪就會費力很多。
用力往下踩人人都會,差別就在於能產生多大的功率而已。踩踏技術的關鍵是:
◎下踩時另一隻腳的重量是否完全離開踏板,又不花多餘的力氣提拉。
◎上拉結束後能不能順暢地劃過下死點。
◎腳掌過死點後從7-11點,沒有任何重量留在踏板上,也不用提拉來驅動踏板。
我們都知道當前方腳處於3點鐘方向時,踩踏最有效率,但與此同時如果後方腳「完全沒有做出上提動作」,那麼整隻腳的重量(約10公斤)就會成為前方腳的阻力。試想想每轉動曲柄一圈所輸出的功率除了要用來驅動腳踏車前進之外,還要克服這10公斤的重量,就好比綁著10公斤的沙包去跑步一樣,既跑不快也跑不遠。
如果想要拿掉這個「沙包」,訓練雙腿提拉的技巧是不二門法,只要能夠在7-11點時作出適當的提拉,下踩的力量就能夠全作為前進之用了。但問題來了,究竟我們如何得知自己已經懂得運用這套技術呢?換一個問法,我們要如何得知這額外的10公斤已經不見了?
以往在只有大盤式跟花鼓式功率計的時代裡,雖然可以知道總共輸出了多少功率,為體能訓練這一塊帶來革命性的影響,但有關踩踏技術的層面大家仍都只能「憑感覺」,技術好不好只有自己才知道。但隨著科技的進步,近年在市面上已推出了好幾款分腿踏板式的功率計(例如Garmin Vector),這種設計的好處在於能夠針對單腳進行個別分析,現在的你不只可以知道功率輸出有多少,也可以知道左腳還是右腳用力比較多、甚至連踩踏技術也能夠作出量化,接下來介紹的兩項數據,正是踏板式功率計所帶來的新意義。
【有效扭力】(Torque Effectiveness)
下圖是一名自行車手踩動曲柄一圈的功率示意圖,X軸是曲柄的角度,Y軸是輸出功率的大小。從這圖中可以觀察到兩個關於踩踏的重點:當曲柄在0度到180度之間,所產生的功率是最大的,特別是在90度時(3點鐘方向),出現功率值的最高峰;另外,在過死點之後(180度之後),會出現負功率,代表此時所產生的功率完全無助於自行車前進,甚至會減少正功率。
負功率的產生正是因為腿部的重量還留踏板上,使它成為另一隻腳往下踩時的負荷之一。
圖:http://ppt.cc/fWA~
◎P+ 代表正功率,是踩踏到曲柄的力量(90度時的力矩最大)
◎P- 代表負功率,即無助於前進的功率
◎有效扭力 = (正功率+負功率)÷正功率×100%
從公式可見,當後方腳所做成的負功率越小(或等於零),有效扭力就會越大:「這正是判斷技術好壞的關鍵」,當有效扭力為100%時,代表單腳轉動一圈時完全沒有產生任何負功率(在7-11點沒有重量留在踏板上),所有的功率皆轉化成向前的動力上。
有效扭力跟踩踏的迴轉速有很大的關係。迴轉速愈高(>90rpm),愈難達到較高的有效扭力,因為後方腳會跟不上踏板,造成越多負功率。但如果要刻意加快後方腳上提的速度,又會容易造成上拉肌群的疲勞。基本上對於在平路或下坡的時候,由於慣性較高,負功率對前進的影響不多,所以有效扭力只要不要低於60%就足夠了。
在迴轉速較低情況下(<80rpm),通常是爬坡的時候,上拉技術優秀的選手的有效扭力大多會處於90%以上,主要是因為踏板的移動的速度較慢,後方腳很容易就能跟上,甚至有可能會在7-11點方向之間產生正功率。
有效扭力在爬坡時是非常重要的數據。如果選手不善於上提的技術,在爬坡時只會更慢、更費力。假設現在有兩名體重同樣是60公斤的選手同時進行爬坡:
A選手輸出250W,擁有良好技術的他有效扭力為95%
B選手輸出300W,但有效扭力只有70%。
現在我們來分析誰會爬得比較快。如果單從功率大小的角度來看的話,B選手擁有絕對的優勢,因為在相同體重的情況下,他可以輸出300W,功率體重比高達5W/kg,而A選手只有250W,功率體重比只有4.2W/kg。但我們再來看看他們的有效扭力,B選手的有效扭力是70%,代表在這300W當中,只有210W是有效用來驅動腳踏車前進,其餘的90W被浪費在克服後方腳的重量上。反觀A選手,有效扭力為95%,所以他有高達238W是用在前進上,比起B選手的210W還高出28W,速度自然也會比較快。因此,A選手雖然功率輸出較B選手差,但擁有優異踩踏技術的他把輸出的功率運用得淋漓盡致,所以還是比B選手更快攻頂。
【踩踏平整度】(Pedal Smoothness)
現在我們知道產生負功率是不好的,那是不是都把後方腳用力往上拉就是最好呢?當然不是。接著要介紹的「踩踏平整度」可以告訴我們答案。
由於人類雙腿的生理構造,天生就較適合往下踩,所以當我們轉動曲柄一圈時,0度到180度之間加總起來的力量(下踩)會比起其他角度都還要高。踩踏平整度是計算曲柄轉動一圈後,其平均功率與最大功率之間相差多少的百分比,數值越高,代表一整圈的功率越平均。
圖:http://ppt.cc/JNrs
◎Pmax 是轉動一圈中的最大功率值
◎Pavg 是轉動一圈的功率平均值
◎踩踏平整度=(轉一圈的平均功率轉動)÷(圈中最大功率)x100%
但我們知道,要讓雙腳達到100%平均用力是不太可能的,因為上拉肌群的力量比起下踩肌群弱太多了,下踩的力道一定會比上拉的高且更有效率。如果我們把後方腳刻意快速往上拉,前方腳輕輕的往下放時,踩踏平整度會明顯提高,但同時你會快速感到疲勞,因為身體根本不習慣用力地上拉。因此可以知道這種騎法是沒有效率的,7-11點鐘方向並不是拉得愈用力愈好。
根據統計,踩踏平整度只要在10-40%之間就屬於在正常範圍內,所以我們其實並不需要過份上拉來取得更高的踩踏平整度,只要維持在10-40%便已足夠。
功率踏板的好處,除了能夠看出兩腳下踩的用力程度是否一樣,還能量化「有效扭力」、「踩踏平整度」,這些三種據,能讓我們更具體地瞭解自己踩踏技術的優劣。
功率效率計算公式 在 課程要點- 測試是否符合節能標準 的相關結果
確保測試準確度. 為了測試是否符合此規格,我們需要測量外部電源供應器的無負載輸入功率和工作模式下的效. 率。 計算效率時,需要測量輸入和輸出功率:. 輸出功率. 效率=. ... <看更多>
功率效率計算公式 在 能量轉換效率- 维基百科,自由的百科全书 的相關結果
能量轉換效率 · 電效率,可用功率輸出及總耗電的比例。 · 机械效率,由一種機械能(例如水的位能)轉換成另一種機械能或機械功。 · 熱效率或燃料效率(英语:Fuel efficiency ... ... <看更多>
功率效率計算公式 在 損耗的簡單計算方法 - 電源設計技術資訊網站 的相關結果
2019年11月20日 — 首先,請看根據效率計算損耗的公式,這同時也是為了整理效率和損耗的關係。 輸入功率[W]=輸出功率[W]+損耗[W] 效率(×100,以“%”表示)=輸出 ... ... <看更多>