🎁🎁🎁
#免費試堂
#文末優惠
#齊齊學coding
#邊玩邊學普通話
大家有比小朋友學coding嗎?
Coding = 編碼係程式設計嘅一種
我第一次接觸係Ronnie幼稚園嘅時候同學仔一齊學Coding
雖然香港未係好普及,好多國家基礎教育既指定必修課程,Coding 係另一種 Writing 既能力,將自己既諗法,以程式碼方式表現係電腦螢幕上。
特別係美國,正在推行小朋友學習程式設計既運動,成為大家係社會上生活既基本技能。
而學coding唔係要佢地成為最厲害既工程師,而係希望佢地能夠將自己既思維,具體表達出來。
最近Ronnie都學識咗Coding,仲創造咗好多好靚嘅作品。睇住普通話既動畫一步一步學,簡單易明,唔明白可以直接問老師,仲可以學埋普通話👏🏻👏🏻👏🏻
嚟緊佢哋仲會有英文版本kids Coding添
學Coding除咗可以段練思考能力之外,我見到Ronnie 遇到問題時學會分析,思考,再解決問題,變得更細心又有耐性
Coding仲可以提升創意同創造力,俾小朋友自由發揮,而家科技發達,數字化時代變化快,Coding就係未來既核心競爭力,好似以前既ABC咁。
🚀RokRok Kids Coding小火箭幼兒編程
(適合四至七歲小朋友)
1️⃣零基礎輕鬆入門,簡單易學,好似玩積木咁一步一步學Coding
2️⃣移動化學習,學習時間靈活,用手機或平板,連上WiFi就可以,老師非常有耐性,服務貼心。
3️⃣涵盖多學科知識,如數學和英文,也可以學習生活常識,比如用火安全。
4️⃣趣味動畫,主題豐富,學習生動有趣。
5️⃣除了完成Coding Tasks,仲要完成講解任務,鍛煉presentation skills。然後老師會再給予評價,並檢查佢地學到既内容是否正確。
🎁🎁🎁講到呢度
大家有冇興趣比小朋友試吓學Kids Coding ?
只要係我地既粉絲,就可以免費試堂,係學Coding入門版既好開始🌟
🔥即刻按以下link 啦👇🏻🔥
https://intl-marketing.codemao.cn/rokrok-cn-hk?from=dada
🚀RokRok Kids Coding小火箭幼兒編程
啓蒙課程 價值$400
📲一共有4堂,整個班期係14天,14天内老師都可以VIP服務,1對1 ,幫助小朋友學習Kids Coding
#giveaway #抽獎 #送禮 #試堂 #粉絲福利
#hkblogger #hkkol #852mamas
#hkig #hkmom #hkfamily #hkinfluencer #hongkongmoms #香港媽媽 #parentsblogger #親子KOL #親子活動 #親子博客
學習表現編碼數學 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
用深度神經網路求解「薛丁格方程式」,AI 開啟量子化學新未來
作者 雷鋒網 | 發布日期 2021 年 01 月 02 日 0:00 |
19 世紀末,量子力學的提出為解釋微觀物質世界打開了一扇大門,徹底改變了人類對物質結構及相互作用的理解。已有實驗證明,量子力學解釋了許多被預言、無法直接想像的現象。
由此,人們也形成了一種既定印象,所有難以理解的問題都可以透過求解量子力學方程式來解決。
但事實上能夠精確求解方程式的體系少之又少。
薛丁格方程式是量子力學的基本方程式,即便已經提出七十多年,它的氫原子求解還是很困難,超過兩個電子的氫原子便很難保證精確度。
不過,多年來科學家們一直在努力克服這一難題。
最近,來自柏林自由大學(Freie Universität Berlin) 的科學團隊取得了突破性進展,他們發表的一篇名為《利用深度神經網路解電子薛丁格方程式》的論文,登上《Nature Chemistry》子刊。
論文明確指出:利用人工智慧求解薛丁格方程式基態解,達到了前所未有的準確度和運算效率。該人工智慧即為深度神經網路(Deep-neural-network),他們將其命名為 PauliNet。
在介紹它之前,我們先來簡單了解薛丁格方程式。
什麼是薛丁格方程式?
薛丁格方程式(Schrödinger Equation),是量子力學中的一個基本方程式。又稱薛丁格波動方程式(Schrödinger Wave Equation),它的命名來自一位名為埃爾溫·薛丁格(Erwin Schrödinger)的奧地利物理學家。
Erwin 曾在 1933 年獲得諾貝爾物理學獎,是量子力學奠基人之一。他在 1926 年發表的量子波形開創性論文中,首次提出了薛丁格方程式。它是一個非相對論的波動方程式,反映了描述微觀粒子的狀態隨時間變化的規律。
具體來說,將物質波的概念和波動方程式相結合建立二階偏微分方程式,以描述微觀粒子的運動,每個微觀系統都有一個相應的薛丁格方程式,透過「解方程式」可得到波函數的具體形式以及對應的能量,從而了解微觀系統的性質。
薛丁格方程式在量子力學的地位,類似牛頓運動定律在經典力學的地位,在物理、化學、材料科學等多領域都有廣泛應用價值。
比如,應用量子力學的基本原理和方法研究化學問題已形成「量子化學」基礎學科,研究範圍包括分子的結構、分子結構與性能之間的關係;分子與分子之間的相互碰撞、相互作用等。
也就是說,在量子化學,透過求解薛丁格方程式可以用來預測出分子的化學和物理性質。
波函數(Wave Function)是求解薛丁格方程式的關鍵,在每個空間位置和時間都定義一個物理系統,並描述系統隨時間的變化,如波粒二象性。同時還能說明這些波如何受外力或影響發生改變。
以下透過氫原子求解可得到正確的波函數。
不過,波函數是高維實體,使捕獲特定編碼電子相互影響的頻譜變得異常困難。
目前在量子化學領域,很多方法都證實無法解決這難題。如利用數學方法獲得特定分子的能量,會限制預測的精確度;使用大量簡單的數學構造塊表示波函數,無法使用少數原子進行計算等。
在此背景下,柏林自由大學科學團隊提出了一種有效的應對方案。團隊成員簡‧赫爾曼(Jan Hermann)稱,到目前為止,離群值(Outlier)是最經濟有效的密度泛函理論(Density functional theory ,一種研究多電子體系電子結構的方法)。相比之下,他們的方法可能更成功,因在可接受計算成本下提供前所未有的精確度。
PauliNet:物理屬性引入 AI 神經網路
Hermann 所說的方法稱為量子蒙地卡羅法。
論文顯示,量子蒙地卡羅(Quantum Monte Carlo)法提供可能的解決方案:對大分子來說,可縮放和並行化,且波函數的精確性只受 Ansatz 靈活性的限制。
具體來說,團隊設計一個深層神經網路表示電子波函數,這是一種全新方法。PauliNet 有當成基準內建的多參考 Hartree-Fock 解決方案,結合有效波函數的物理特性,並使用變分量子蒙地卡洛訓練。
弗蘭克‧諾(Frank Noé)教授解釋:「不同於簡單標準的數學公式求解波函數,我們設計的人工神經網路能夠學習電子如何圍繞原子核定位的複雜模式。」
電子波函數的獨特特徵是反對稱性。當兩個電子交換時,波函數必須改變符號。我們必須將這種特性構建到神經網路體系結構才能工作。
這類似包立不相容原理(Pauli’s Exclusion Principle),因此研究人員將該神經網路體系命名為「PauliNet」。
除了包立不相容原理,電子波函數還具有其他基本物理特性。PauliNet 成功之處不僅在於利用 AI 訓練數據,還在將這些物理屬性全部整合到深度神經網路。
對此,FrankNoé 還特意強調說:
「將基本物理學納入 AI 至關重要,因為它能夠做出有意義的預測,這是科學家可以為 AI 做出有實質性貢獻的地方,也是我們關注的重點。」
實驗結果:高精確度、高效率
PauliNet 對電子薛丁格方程式深入學習的核心方法是波函數 Ansatz,它結合了電子波函數斯萊特行列式(Slater Determinants),多行列式展開(Multi-Determinant Expansion),Jastro 因子(Jastrow Factor),回流變換(backflow transformation,),尖點條件(Cusp Conditions)以及能夠編碼異質分子系統中電子運動複雜特徵的深層神經網路。如下圖:
論文中,研究人員將 PauliNet 與 SD-VMC(singledeterminant variational,標準單行列式變分蒙地卡羅)、SD-DMC(singledeterminant diffusion,標準單行列式擴散蒙地卡羅)和 DeepWF 進行比較。
實驗結果顯示,在氫分子(H_2)、氫化鋰(LiH)、鈹(Be)以及硼(B)和線性氫鏈 H_10 五種基態能量的對比下,PauliNe 相較於 SD-VMC、SD-DMC 以及 DeepWF 均表現出更高的精準度。
同時論文中還表示,與專業的量子化學方法相比──處理環丁二烯過渡態能量,其準確性達到一致性的同時,也能夠保持較高的計算效率。
開啟「量子化學」新未來
需要說明的是,該項研究屬於一項基礎性研究。
也就是說,它在真正應用到工業場景之前,還有很多挑戰需要克服。不過研究人員也表示,它為長久以來困擾分子和材料科學的難題提供了一種新的可能性和解決思路。
此外,求解薛丁格方程式在量子化學領域的應用非常廣泛。從電腦視覺到材料科學,它將會帶來人類無法想像的科學進步。雖然這項革命性創新方法離落地應用還有很長的一段路要走,但它出現並活躍在科學世界已足以令人興奮。
如 Frank Noé 教授所說:「相信它可以極大地影響量子化學的未來。」
附圖:▲ Ψ 表示波函數。
資料來源:https://technews.tw/2021/01/02/schrodinger-equation-ai/?fbclid=IwAR340MNmOkOxUQERLf4u3SK0Um6VQVBpvEkV_DxyxIIcUv8IP88btuXNJ6U
學習表現編碼數學 在 李開復 Kai-Fu Lee Facebook 的精選貼文
這是我看過最好的一篇GPT-3 科普文章。到現在還看不懂GPT-3的,建議好好讀:
本文來自量子位微信公眾號
…………………………………………
火爆全球的GPT-3,到底憑什麼砸大家飯碗?
GPT-3是指第三代生成式預訓練Transformer,它由三藩市AI公司OpenAI開發。該程式歷經數年的發展,最近在AI文本生成領域內掀起了一波的創新浪潮。
從許多方面來看,這些進步與自2012年以來AI影像處理的飛躍相似。
電腦視覺技術促進了、無人駕駛汽車到面部識別、無人機的發展。因此,有理由認為GPT-3及其同類產品的新功能可能會產生類似的深遠影響。
與所有深度學習系統一樣,GPT-3也是資料模式。它在龐大的文本集上進行了訓練,並根據統計規律進行了挖掘。
重要的是,此過程中無需人工干預,程式在沒有任何指導的情況下查找,然後將其用於完成文本提示。
▌海量訓練數據
GPT-3的與眾不同之處在於它的運行規模和完成一系列令人難以置信的任務。
第一版GPT於2018年發佈,包含1.17億個參數。2019年發佈的GPT-2包含15億個參數。
相比之下,GPT-3擁有1750億個參數,比其前身多100倍,比之前最大的同類NLP模型要多10倍。
GPT-3的訓練資料集也十分龐大。整個英語維琪百科(約600萬個詞條)僅占其訓練數據的0.6%。
訓練資料的其他部分來自數位化書籍和各種網頁連結。不僅包括新聞文章、食譜和詩歌之類的內容,還包括程式碼、科幻小說、宗教預言等各種你可以想像到的任何文字。
上傳到互聯網的文本類型都可能成為其訓練資料,其中還包括不良內容。比如偽科學、陰謀論、種族主義等等。這些內容也會投喂給AI。
這種不可置信的深度和複雜性使輸出也具有複雜性,從而讓GPT-3成為一種非常靈活的工具。
在過去的幾周中,OpenAI通過向AI社區的成員提供GPT-3商業API,鼓勵了這些實驗。這導致大量新的用法出現。
下面是人們使用GPT-3創建的一小部分示例:
▌GPT-3能做什麼
1、基於問題的搜尋引擎:就像Google,鍵入問題,GPT-3會將定向到相關的維琪百科URL作為答案。
2、與歷史人物交談的聊天機器人:由於GPT-3接受過許多數位化書籍的訓練,因此它吸收了大量與特定哲學家相關的知識。這意味著你可以啟動GPT-3,使其像哲學家羅素一樣講話。
3、僅需幾個樣本,即可解決語言和語法難題。
4、基於文本描述的代碼生成:用簡單的文字描述你選擇的設計項目或頁面配置,GPT-3會彈出相關代碼。
5、回答醫療問題:來自英國的一名醫學生使用GPT-3回答了醫療保健問題。該程式不僅給出了正確答案,還正確解釋了潛在的生物學機制。
6、基於文本的探險遊戲。
7、文本的風格遷移:以某種格式編寫的輸入文本,GPT-3可以將其更改為另一種格式。
8、編寫吉他曲譜:這意味著GPT-3可以自行生成音樂。
9、寫創意小說。
10、自動完成圖像:這項工作是由GPT-2和OpenAI團隊完成的。它表明可以在圖元而不是單詞上訓練相同的基本GPT體系結構,從而使其可以像在文字上一樣實現視覺資料自動完成任務。
但是,所有這些樣本都需要一些上下文,以便更好地理解它們。而令人印象深刻的是,GPT-3沒有接受過完成任何特定任務的訓練。
常見的語言模型(包括GPT-2)需要完成基礎訓練,然後再微調以執行特定任務。
但是GPT-3不需要微調。在語法難題中,它只需要一些所需輸出類型的樣本(稱為“少量學習”)。
GPT-3是如此龐大,以至於所有這些不同功能都可以在其中實現。用戶只需要輸入正確的提示就可以調教好它。
但是網上傳出的內容存在另一個問題:這些都是精心挑選的樣本,生成結果肯定不止一個。必然有炒作因素。
正如AI研究人員Delip Rao在一篇針對GPT-3的炒作解構文章中指出的那樣,該軟體的許多早期演示來自矽谷企業家,他們渴望宣傳該技術的潛力並忽略其陷阱,因為他們關注AI帶來的新創業公司。
的確,瘋狂的鼓吹情緒變得如此強烈,以至於OpenAI CEO本人都發Twitter說:GPT-3被過度宣傳了。
▌GPT-3也會犯低級錯誤
儘管GPT-3可以編寫代碼,但我們很難判斷其總體用途。它是淩亂的代碼嗎,這樣的代碼會為人類開發人員帶來更多問題嗎?
沒有詳細的測試很難說,但是我們知道GPT-3在其他方面會犯嚴重錯誤。
當用戶和GPT-3創造的“約伯斯”交談時,詢問他現在何處,這個“約伯斯”回答:“我在加州庫比蒂諾的蘋果總部內。”這是一個連貫的答案,但很難說是一個值得信賴的答案。
在回答瑣事問題或基本數學問題時,也可以看到GPT-3犯了類似的錯誤。例如,不能正確回答100萬前的數是多少(回答是99萬)。
但是,我們很難權衡這些錯誤的重要性和普遍性。
如何判斷這個可以幾乎回答所有問題的程式的準確性?如何創建GPT-3的“知識”的系統地圖,然後如何對其進行標記?
儘管GPT-3經常會產生錯誤,但更加艱巨的挑戰是,通常可以通過微調所輸入的文本來解決這些問題。
用GPT-3創造出小說的研究人員Branwen指出,“抽樣可以證明知識的存在,但不能證明知識的缺失”,可以通過微調提示來修復GPT-3輸出中的許多錯誤。
在一個錯誤的示範中,詢問GPT-3:“哪個更重,一個烤麵包機或一支鉛筆?” 它回答說:“鉛筆比烤麵包機重。”
但是Branwen指出,如果你在問這個問題之前給機器投喂某些提示,告訴它水壺比貓重,海洋比塵土重,它會給出正確的回應。
這可能是一個棘手的過程,但是它表明GPT-3可以擁有正確的答案,如果你知道怎麼調教它。
Branwen認為,這種微調最終可能會最終成為一種編碼範例。就像程式設計語言使用專用語法的編碼更加流暢一樣,未來我們可能完全放棄這些程式設計語言,而僅使用自然語言程式設計。從業人員可以通過思考程式的弱點並相應地調整提示,來從程式中得出正確的回應。
GPT-3的錯誤引起了另一個問題:該程式不可信的性質是否會破壞其整體實用性?
現在人們已經嘗試了GPT-3各種用途:從創建客服機器人,到自動內容審核。但是答案內容的錯誤可能回給商業公司帶來嚴重後果。
沒有人原因創建一個偶爾侮辱客戶的客服機器人。如果沒有辦法知道答案是否可靠,我們也不敢拿GPT-3作為教育工具。
▌專業人士評價
一位匿名的在Google資深AI研究人員說,他們認為GPT-3僅能自動完成一些瑣碎任務,較小、更便宜的AI程式也可以做到,而且程式的絕對不可靠性最終會破壞其商用。
這位研究人員指出,如果沒有很多複雜的工程調試,GPT-3還不夠真正使用。
AI研究人員Julian Togelius說:“ GPT-3的表現常常像是一個聰明的學生,沒有讀完書,試圖通過廢話,比如一些眾所周知的事實和一些直率的謊言交織在一起,讓它看起來像是一種流暢的敘述。”
另一個嚴重的問題是GPT-3的輸出存在偏見。英偉達的AI專家Anima Anandkumar教授指出,GPT-3在部分程度上接受了Reddit過濾後的資料的訓練,並且根據此資料構建的模型產生的文本有“令人震驚地偏向性”。
在GPT-2的輸出中,如果要求完成下列句子時,模型會產生各種歧視性言論:“ 黑人(皮條客工作了15年)”、“ 那個女人(以Hariya為名做妓女)”。
參考連結:
https://www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential