機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
同時也有1部Youtube影片,追蹤數超過8萬的網紅范琪斐,也在其Youtube影片中提到,人臉辨識,就是用科技計算的方式,來比較臉部視覺特徵,藉此鑑定身分的一種電腦技術。 其實我們可以把人臉辨識想像成是一套演算法,各種不同的廠商或公司可能會有不同的演算規則。但整體的邏輯是一樣的,通常會先偵測人臉、然後進行臉部校正與擷取特徵、再進行比對工作。 當攝影機拍到你的時候,它第一步也會先切成一...
「科技執法原理」的推薦目錄:
- 關於科技執法原理 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於科技執法原理 在 財經狙擊手 - 股市阿水 Facebook 的最佳解答
- 關於科技執法原理 在 三立新聞 Facebook 的精選貼文
- 關於科技執法原理 在 范琪斐 Youtube 的最佳貼文
- 關於科技執法原理 在 桃20處科技執法首日207件闖紅燈 - Mobile01 的評價
- 關於科技執法原理 在 多向照相監測! 科技執法5天抓515違規|三立新聞台 - YouTube 的評價
- 關於科技執法原理 在 2022 0106 新北區間測速儀器檢測過關春節前先啟用3處執法 的評價
- 關於科技執法原理 在 開車闖紅燈和壓線被拍照的原理大解密!這樣以後就不會被拍了 ... 的評價
科技執法原理 在 財經狙擊手 - 股市阿水 Facebook 的最佳解答
大家好,我是股市阿水,
我說一個實際的數據給大家了解:
目前挖礦在不計設備折舊下,100萬投入、"實際月收8萬~9萬"
最少只需不到五萬塊就能開始自己的小礦場,
幫自己"每月加薪2000~3000元",
只有幾台的情況下,完全可以自管、日常也不用管它、且因為完全你自建,不會被詐騙的風險。
(此為實際收入,計算標準以2020/3 比特幣&以太幣全網算力及換算台幣價格計算、已扣除電費成本)
而這,只是阿水要交的初階班的最簡單的東西,
一堂課只花你2600元不到,
初階班在3/27上完課之後,因為幣值的上升,
所有完成步驟的人,已經現賺1200新台幣,
整個課程你什麼都還沒投資,已經先把課程費用賺一半回來了,
有些人說,阿水你不務正業了嗎?
不,其實是因為你們不知道我平常在做什麼:
我曾任納斯達克上市公司IT部門主管、較為人知的身份為專職台股投資人,
大家不知道的是,因為接觸資訊科技的關係
在比特幣出現的數年內,阿水就已經開始在接觸比特幣
也已經在這個圈子很久,只是一直專注在股市而非區塊鏈市場教學
2011 年 中華電信全國電信大賽、10,547組報名參賽,獲得應用創意分組全國冠軍
2013 年開始接觸比特幣,購入並持有比特幣。
2018 年開始投資比特幣中國礦場
2020 年協助多人在台灣創立自有礦場及維運
※第一個橫跨台股&區塊鏈交易的投資人。
※第一個將布林通道應用在區塊鏈交易的專職投資人
阿水特別設計了兩個課程:
一個為☆☆☆區塊鏈初階班☆☆☆
一個為★★★區塊鏈實戰班★★★
先說說:
☆☆☆區塊鏈初階班☆☆☆:
什麼是區塊鏈?什麼是比特幣?一大堆奇奇怪怪的幣到底是不是泡沫?
這個課程適合完全不懂的人,卻想從真正投資過礦場、建設過礦場,
操作過大量交易並投資過區塊鏈的多年老手身上學東西的人
只需有基本電腦知識(就是能開機、關機、上網、懂簡單電腦操作)
就適合上。
阿水從0教你認識什麼是虛擬貨幣包括:
§ 最淺顯易懂的區塊鏈原理教學。
§ 虛擬貨幣市場安全嗎?什麼是穩定幣?
§ 比特幣?以太幣?泰達幣?這些是什麼?
§ 該怎麼買比特幣?以太幣?什麼是交易所?如何挑選安全的交易所?
§ 該怎麼挖礦?買不到顯示卡還能挖嗎?
§ 三種投資虛擬貨幣的方法:直接挖礦、合約投資與直接交易買賣虛擬貨幣投資
§ 什麼是礦池?礦場?分潤規則又是什麼?挖礦工具又是什麼?
§ 什麼是冷錢包?熱錢包?虛擬貨幣如何避免駭客?
§ 認識比特幣稅務問題
§ 虛擬貨幣騙局多,該怎麼判斷?
§ 買東西也能用虛擬貨幣刷卡?怎麼做?
在這堂課中,阿水會幫你整理最實用的資訊
在上完這堂課之後,只要融會貫通,你將有能力:
● 理解區塊鏈原理、區塊鏈市場現狀。
● 能快速判斷什麼是詐騙,什麼是真實的應用。
● 了解如何在現在買不到顯卡的情況下,取得挖礦硬體
● 有能力取得虛擬貨幣、並能順利將虛擬貨幣換成新台幣 (反之亦然)
● 用信用卡刷虛擬貨幣購買日常生活用品
讓你快速從完全不懂,也能對虛擬貨幣有一定的認識
我知道一定會有人覺得,這些資料你去GOOGLE也能找到部份資訊
但是別忘了,
系統性的整合,才是幫你省下大量的時間
實戰化的教學,才是你的礦場能真正運作的訣竅
搜尋資訊簡單、整合資料困難
建立觀念簡單、有正確且系統的觀念困難
踏入區塊鏈簡單、熟稔市場運作困難
問網友建議簡單、找有建立過中小型礦場經驗的人困難
目前網路上找的到的,大都是看好賺才接觸的人
但既不會避免風險,也沒有能力教你如何穩定管理幾十台甚至上百台礦機
因為有一部份人,本來就只是想投機、而不是投資
行動帶來改變、
若是連"機會"你都不願意了解,
只會用不知道哪裡來的偏見來看待這件事
又怎能抱怨上天不給你"機會"?
阿水當年就是外商公司的在台資訊最大主管
掌管數個橫跨多縣市的機房、伺服器、網路設備
線上付費直播教學、免費一年期無限次重看
你當然可以選擇網路上不知名的網友告訴你:這風險很大、虛擬貨幣就是浪費電
但投資從來不是別人都在做,你才來踏進這個市場
你想聽不懂的人亂講?還是你想"好好"又中立的理解這個機會?
上課時間:官網随時付費與註冊完成,隨時觀看:
上課時長:長達300分鐘以上完整課程
重複觀看:有,提供課後免費一年期無限次重看。
課程費用:
原價3600元,限時報名打71折
線上刷卡價:只要 2588 元 *(限時七天)
報名方式:
1. 先連到官網:
https://waterstock.tw/blockchain_elementary
2. 點擊報名課程,完成付費與官網註冊
3. 在會員專區,觀看課程
如果有任何問題:
比如沒收到確認信、沒收到上課連結
請寄信到 waterstock888@gmail.com 或者 股市阿水Line@ 唷
等等,你以為這樣就沒有了嗎?
還有更強大的交你怎麼免費使用下單機器人進行期貨與現貨對鎖
是真正低風險的套利交易,
而這些交易系統,
都是經過
新加坡金融管理局(MAS)
以及
美國 FinCEN (金融犯罪執法局)核發的 MSB 監管牌照
透過正當的大型網站,才是真正金融交易
而你不用擔心你不懂,這些我在實戰班內,還會再教你怎麼做
學會初階班,能會懂區塊鏈
學會實戰班,能懂區塊鏈套利與交易
目前區塊鏈套利的年利率在15%~50%
(而且選對時間,比如美金低點的現在,正是好時機)
你的投資現在有年利率15%嗎?
★★★區塊鏈實戰班★★★:
阿水教你用布林通道,以及自動化的交易機器人,處理繁瑣的24hr都能交易的虛擬貨幣市場
同時實戰教學礦機搭建從0到維護、實戰班有課後LINE群,讓你有問題都能問
更有實體講義寄送、都由阿水幫你設定好了。
優惠來了!
如果你初階與實戰一起報,
阿水再加贈:挖礦優化安裝64G USB碟、內附有優化方式與必備挖礦程式
(只送不賣、請勿外流)
阿水教你怎麼使用現有的免費資源,搭配阿水自己的布林通道戰法
這堂課將教你:
§ 布林通道 實戰多種虛擬貨幣交易技法
§ 網格交易、自動化交易設定與策略分享
§ ETH 挖礦工具選擇:Gminer、T-rex、Phoenix
§ 如何挖以太幣獲得比特幣的教學 (算力販售)
§ 個人礦機搭建實例教學 (包括優化、傻瓜超頻法、免費自己遠端管理、算力運算、認識tdp..等)
§ 認識去中心化新融中心 DeFi (認識風險)
§ 教你怎麼在交易所快速交易各類虛擬貨幣
基本上我希望是你同時報名了初階班的人,再來報實戰班
現在這個市場24hr可交易
同時也有免費的交易機器人可以設定
都不需要再另外買付費軟體
同時提供一個月的免費課後line群(視情況延長或到期解散)
讓你有問題就能問。
而且阿水的管理經驗會教你怎麼在一般人都能了解的情況下
如果你初階與實戰一起報
就免費贈送64G 最新USB3.2代的安裝碟
內附有優化方式與必備挖礦程式
(只送不賣、請勿外流) 幫你在windows底下處理挖礦的大大小小的問題
上課時間:2021/4/17(六) 下午1:30 ~ 5:30
上課方式:付費私人直播 (上課前三天與當天E-mail通知唷)
重複觀看:有,提供課後免費一年期無限次重看。(無法直播觀看的人也可以看影片)
課程費用:
原價11500元,限時報名打67折
線上刷卡價:只要 7688 元
直接轉帳價:因省去金流手續費、幫各位再省!只需7050元
區塊鏈實戰班付款方式(二選一):
1. 線上刷卡(7688元)
https://core.newebpay.com/EPG/waterstock/8eTY6U
(線上刷卡者無須填寫底下的表單
2. 直接轉帳(7050元)
銀行代碼:土地銀行
銀行帳號:032-001-51370-1
分行:台南分行
戶名:諾亞方舟科技有限公司
轉帳後請務必填寫以下表單
以利通知上課及查帳還有發票通知唷。
https://forms.gle/uhTVsz5nX7wkdLG46
(付款完兩個工作天內會確認報名成功信件、大家放心,每一筆款項阿水都會請員工查帳唷)
如果有任何問題:
比如沒收到確認信、沒收到上課連結
請寄信到 waterstock888@gmail.com 或者 股市阿水Line@ 唷
科技執法原理 在 三立新聞 Facebook 的精選貼文
台灣公司竟然直接拿中國製低價品貼牌,設置在台北市自強隧道的區間測速器@@"(#虎妞編)
🔈新推出!立馬聽播客頻道 隨時想聽就來聽~ https://reurl.cc/n0Lv4D
科技執法原理 在 范琪斐 Youtube 的最佳貼文
人臉辨識,就是用科技計算的方式,來比較臉部視覺特徵,藉此鑑定身分的一種電腦技術。
其實我們可以把人臉辨識想像成是一套演算法,各種不同的廠商或公司可能會有不同的演算規則。但整體的邏輯是一樣的,通常會先偵測人臉、然後進行臉部校正與擷取特徵、再進行比對工作。
當攝影機拍到你的時候,它第一步也會先切成一張一張的影格,然後去找到你的臉,就像是我們相機在拍照的時候,它不是會在臉旁邊出現一個框框讓你比較好對焦,這就是使用了人臉偵測的技術。
也因為人臉其實有一些特徵,所系統會開始擷取一些我們臉上出具有「辨別度」的特徵,像是顴骨的形狀啦、眼窩的深度之類的,一張臉大約有80幾個識別點,但也因為拍攝時可能剛好低頭或轉頭,或是受到光線影響之類的,有些系統會在抓取特徵的時候也要進行校正,利用人中啊、眼睛啊或嘴角之類的作為錨點,將人臉校正到同一個比較基準。現在也有2D轉3D的技術,用3D模型來計算你不同角度應該是長什麼樣子。那抓出這些特徵以後呢,這個演算法會把你臉上用這些特徵畫出來的向量,轉換成編碼,於是你這個人獨特的特徵就可以用一串數字來代表,最後再送到資料庫進行比對。
雖然人臉識別這個技術早再很多年前就已經開始發展,但是到這幾年因為電腦計算速度大幅加快、雲端技術成熟,才有較大的進展。而且這樣子一套演算法,還需要透過AI深度學習,模擬我們大腦神經網絡的運作,然後從大規模未標記的資料中學習,來建立出一套演算法、不斷優化出更好的模型。才能讓辨識度越來越準確。
不過即使臉部辨識技術已經發展了一段時間,辨識準確度卻還是有待加強,美國國家標準暨技術研究院 (Nist) 的一項測試就發現,2014年到2018年期間,人臉辨識系統因為深度學習的技術,失敗率從4% 降到 0.2%。BUT!資料庫中的照片跟現實生活中可不一樣,每個人頭擺的角度、臉出現在畫面中的位置、拍攝光線、畫素、有沒有戴帽子、帶圍巾或變老,這些都會影響準確度。而且目前雙胞胎的辨識,還是一大難題。
像是英國南威爾斯警方2017在歐洲足球冠軍賽期間,測試一款全新的AI臉部識別程序,可以搜尋比對資料庫裡面的50萬筆潛在罪犯資料,結果系統在17萬名觀眾當中,配對了2470人為潛在目標,但是錯誤率高達92%。
Amazon 2016年推出影像辨識 AI 系統Rekognition,也曾經把28名國會議員辨識為罪犯,讓大家都嚇到吃手手。美國奧蘭多市政府也從 2017 年開始與 Amazon 合作進行先導計劃,在市內幾個地方架設監視器,實時進行人臉辨識,希望可以找出通緝犯等特定人士,幫助執法。不過在 15 個月的測試中,卻發現系統經常誤判,準確度常常出問題,後來在2019年終止這項合作。
人臉辨識跟很多技術一樣,就是個雙面刃。雖然這項科技已經越來越進步,而且透過電腦的深度學習,讓判讀的準確度大大提升,但它仍然不像DNA那樣,正確度高達99.9%,可以作為決定性的判定標準。
--------------------------------------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在 #寰宇新聞台 播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 1030pm準時上傳完整版!
科技執法原理 在 多向照相監測! 科技執法5天抓515違規|三立新聞台 - YouTube 的推薦與評價
高雄市警方在3大路口架設路口「多向違規監測系統」,只要有車輛違規都會發出聲響,提醒機車騎士。警方表示因為 科技執法 ,違規影像都會被清楚拍到, ... ... <看更多>
科技執法原理 在 2022 0106 新北區間測速儀器檢測過關春節前先啟用3處執法 的推薦與評價
新北市政府警察局交通警察大隊長鄭永裕今天告訴中央社記者,新北區間測速執法對 ... 征服者 #桃園 #桃53-1 #文中路 #龍安街 #科技執法 #多向違規監測系統 #桃園分局 ... ... <看更多>
科技執法原理 在 桃20處科技執法首日207件闖紅燈 - Mobile01 的推薦與評價
交通警察大隊指出,警方向中華電信租用20處闖紅燈執法照相設備,在桃園10個行政區各設2處執法點,去年各點共發生363件交通事故,希望透過科技執法嚇阻違規 ... ... <看更多>