卻坐
Mony klyf he ouerclambe in contrayez straunge,
Fer floten fro his frendez fremedly, he rydez.
─Gawain
屋子裏有一種秋葉
燃燒的氣味,像往年
對窗讀書在遙遠的樓上
簷角聽見風鈴
若有若無的寂寞。我知道
翻過這一頁英雄即將起身,著裝
言秣其馬
檢視旗幟與劍
逆流而上遂去征服些縱火的龍
之類,解救一高貴,有難的女性
自危險的城堡。他的椅子空在
那裏,不安定的陽光
長期曬著
--
小編哲佑賞析:
「卻」作動詞有「退」之義,作副詞則有「倒、反」、「還、再」等義,因此「卻坐」既可以是空著椅子的「退離座位」,也可以是復而再來地「又坐」,甚或欲拒還迎地「反(而)坐」。而這個迴還的空間,在詩裡彷彿以「坐而書」與「起而行」來對比辯證,前半段為房內對窗讀書,後半段為英雄起身策馬冒險,再映照此詩做為詩集《涉事》的開卷作,則文學涉事與否,詩人涉事與否,在意圖上或在能力上,恐怕一直都有著「不安定的陽光」。
若再細究,會發現這首詩其實不是一個單純的二元對立結構。首句「秋葉燃燒的氣味」,像一個儀式或刺點,召喚過往的情境,將詩人投擲至生命某個特定片段。在所有感官裡,「氣味」往往比視覺、聽覺更能召喚回憶,它能夠直接進入人類的情感與記憶中心,帶來更強烈的情緒化效果(注一); 於是詩人被強制帶離當下,重回多年前的青年時代,遙遠之樓彷彿是洞悉世事的制高點,對窗卻不望遠,埋首書裡每一個輾轉的可能。翻頁過去,風鈴拂動,一遍遍交代了現實的寂寞。第五句的「我知道」既是兩邊的轉場,又是提醒、拉抬了第三個視角──如同許又方先生分析此詩所言,此處的「我知道」是一個「已然」(注二), 從回憶再度扣回當下,書裡故事不受限制,這表示詩人清楚意識自己的隔閡。
楊牧在《涉事》後記裡寫到,曾經的壯於閱讀而弱於分析判斷,是如此合宜於一個學生。但多年後重新憶起往昔,竟覺得這個遠行的啟示,相較於自己,原來是「有限的英雄」與「無盡的悲劇」;若當時的逃避與怯弱是印證英雄之有限,那麼這秋葉燃燒的氛圍,便是時間大神留下的悲壯痕跡。在中國文學傳統中,秋之悲不只在於時空滄桑變化,還在於個人老大無成的遺憾,火灼之葉彷彿是無邊落木墜入黃昏,那已是中年的再回首。留存在記憶裡的場景:靜與動,落筆與力行,畢竟是選擇了前者,但後者的姿態卻在書裡出現,像是某種啟示,又像是某種質疑與追悔,永恆地纏繞於心。
而書裡寫的故事是什麼呢?詩題下引了兩句中古英語,來自英國中世紀的騎士傳奇《甲溫與綠騎俠》,是一首長篇敘事詩,楊牧曾將之翻譯為中文。在《涉事》的後記中,楊牧也將二句的中文譯出:
他陟降無數域外陡削的山頭,
漸行漸遠離開友伴策騎跋涉。
一個彷彿無止境追索與戰鬥,對可能不存在的形上主體(是否有神?)信仰、追求、奉獻。當騎士的選擇是起身著裝,年少的楊牧卻是對窗讀書,這不知哪一個更令人不安?
這首詩裡沒有給出答案,卻將詩收束在空而未撤的坐位,遂讓人再次反思詩題;卻坐之「卻」,不只是離開,還是再來。於是在此,詩作又往上翻了一層意義了:如果遠行的目標是歸返,那未曾遠行之人,是否也有歸返的核心?更繼續推想,如果將追索化為無形,那對窗讀書的我,是否也正跋涉著自己的荒野密林,通過種種考驗淬煉?這些問題,在詩集後記裡楊牧說:「文字符號為我展開的是嚴密,深邃的象徵和寓言,跌宕的聲韻,飄浮游離的旋律若即若離,可能我也和他一樣,經歷著永無止歇的戰鬥,渴望著休息」、「旗幟與劍是他挺進的姿勢,詩是我涉事的行為」,如果詩得以成就楊牧的「涉事」,那麼這首〈卻坐〉,無寧是其懺悟、辯解與告白。
注一:相較於其他感官,氣味能直接進入大腦的中樞系統,因此能直接影響情緒、記憶與荷爾蒙,2004年,兩位美國科學家理查阿克塞爾(Richard Axel)與琳達巴克(Linda Brown Buck)因嗅覺受體與嗅覺系統,獲得諾貝爾醫學獎。而用氣味召喚情感與記憶,最有名者為普魯斯特,其他歷來文學家關於氣味與記憶的描寫,可參考黛安‧艾克曼(Diane Ackerman)《氣味、記憶與愛欲:艾克曼的大腦詩篇》。
注二:許又方:〈詩學理念的實踐:讀楊牧的〈黃雀〉與〈卻坐〉〉,《東海中文學報》第36期,2016年12月。
--
美術設計:�李昱賢
攝影來源:�李昱賢 IG:https://www.instagram.com/ahhsien_/
#每天為你讀一首詩 #楊牧 #人文歷史 #卻坐 #臺灣大學楊牧詩文研讀課程 #郭哲佑
艾克曼層 在 Facebook 的最讚貼文
【科普文分享】快樂有偈傾/Karen博士 麥博電視
//「快樂」係咩嚟?聽起來似是《哲學有偈傾》的題目。一個人快樂與否和有幾快樂是主觀的。但我們能夠用科學方法去客觀地瞭解快樂嗎?當中又存在甚麼困難?而這些發現會幫助到我們得到快樂嗎?人開心自然會展露笑容,但是我們亦知道笑也有分真假。
美國心理學家艾克曼 Paul Ekman 於 1967 年帶着攝錄機、錄音機和一些美國人相片,去巴布亞新畿內亞進行田野考察。靠當地導遊帶路,他到達一個西方文明人從未踏足過的地方。這個原始部落的人穿著牛皮和草裙,用樹葉搭屋,以石頭當工具,甚至有食死去親屬的大腦的習俗。為了研究當地人的面部表情,艾克曼在這個偏遠的部落生活了幾個月。
我們的面部表情透露內心情緒。但喜、怒、哀、樂這些表情是我們自小學習得來的溝通方法,還是與生俱來的呢?人類的表情會因為文化或地域而有所不同嗎?艾克曼做了一個實驗,他先用錄音機錄低族人的說話,然後在他們面前播放。當族人聽到自己聲音的時候,顯然表現得既驚喜又興奮,雙眼發光並咧嘴而笑。於是,艾克曼立即用錄影機將他們的笑容拍下來。他還與族人做了其他實驗,例如在部落小童面前拿出膠刀作威嚇狀,就是為了拍下他們驚恐的表情。他又用相片測試族人能否憑面部表情去判斷相中人的情緒。他發現,縱使種族、文化背景、語言相異,但人類都會用一模一樣的表情去表達喜怒哀樂這些基本情緒。
如何辨析真開心定假笑?
艾克曼將笑容分為 19 種,他發現當中只有 1 種笑容是真誠的,是單純因為快樂而發自內心地笑。而其餘 18 種都只屬「假笑」,與快樂無關。假笑大概可以分成兩類:社交微笑 (Social smiles) 和工作微笑。例如我們會用笑來掩飾尷尬或恐懼,這就為之社交用的笑容;至於「返工用」的笑容又會被稱做「肉毒桿菌微笑 (Botox smile) 」,相信大家都曾見過服務行業那種「皮笑肉不笑」的表情。
早在 19 世紀,法國神經學家杜鄉 Guillaume Duchenne 就研究面部表情。他於 1862 年提出真笑和假笑的分別,當人真笑時,顴大肌與眼輪匝肌會收縮,同時眉頭上的皺眉肌會放鬆。艾克曼稱這種真誠的快樂笑容為杜鄉微笑 (Duchenne Smile) 。
Chok 快樂笑容 關鍵在於「眼神」
讀者可以對鏡自我觀察一下,顴大肌收縮會拉高嘴角和提升臉頰。眼輪匝肌是在眼皮下面的肌肉,圍繞眼睛負責閉眼。當人「真(開)心笑」時,眼輪匝肌會受自主神經系統所控制而收縮,令人下意識地矇起雙眼,並形成魚尾紋。此外,大家試試能否緊皺著眉頭來展露真誠的笑容,你覺得一個皺著眉的笑容會是個快樂的表情嗎?
在「假笑」時我們通常只收縮顴大肌以表達禮貌。有些人因為貪靚去注射肉毒桿菌毒素 (Botox) ,令眼睛周圍的肌肉暫時麻痺,防止魚尾紋出現。所以,打了 Botox 的人表情都有點生硬,讓別人覺得很假的感覺。當我們有意識地擠出笑容時,則是靠主要運動皮層 (primary motor cortex) 來控制顴大肌。據說只有大約 10% 人可以不經特殊訓練就控制到眼輪匝肌, chok 出杜鄉微笑。
杜鄉作為電生理學的先驅,他用電極放在面部痲痺病人的面上做實驗,接通微弱電流刺激面部肌肉收縮,研究 42 條面部肌肉如何產生各種表情。杜鄉用攝影機拍下了病人的眼輪匝肌和顴大肌同時收縮的樣子,露出了頗不自然的快樂笑容。
港台電視 31《真係好科學》今季最後一集以快樂為題。科學家除了研究笑的真假外,亦會討論酒凹如何形成、老鼠實驗是否解釋到「快樂分子」多巴胺在神經系統中的作用。身體內還有甚麼生化機制會令人感到快樂,或驅使人重複食、飲水、交配等事情以獲得快感?本集將與觀眾一一探討,一起快樂有偈傾。//
艾克曼層 在 白色豆腐蛋糕電影日記 Facebook 的精選貼文
凱特布蘭琪女王專心在家防疫
洩漏有《雷神索爾》槌子、《魔戒》及《哈比人》系列的雙刃
近期最愛電影是《地球最後的夜晚》
奧斯卡影后凱特布蘭琪最近專心在家防疫,她透露自己這幾天都在陪伴家人,並且隔空接受Stephen Colbert的採訪,提到自己拍完《雷神索爾:諸神黃昏》的大反派海拉、《魔戒》及《哈比人》系列的精靈女王之後,將片中的重要道具帶回家收藏。
這其中也包括了雷神之槌、《魔戒》及《哈比人》系列的雙刃。
凱特布蘭琪最近在家還有接受其他訪問,並聊到自己會與兒子一起看電影,最近最喜歡的電影是中國導演畢贛《地球最後的夜晚》。
「我的兒子是電影迷,他很有品味,那天晚上我們看了一部相當慰藉我們的電影,實際上是他帶我看的,就是畢贛的《地球最後的夜晚》。」
「我是塔可夫斯基的忠實粉絲,也喜歡香妲艾克曼、王家衛,然而畢贛擷取了這些電影的精華做為參考,然後反射出一些精緻且痛苦的美,這很複雜,層次分明且令人著迷。
這部電影關乎愛情、記憶與時間,我想在這部電影裡面,我們進入了這些思考,但這真是一種奇怪的冥想,顯然是很虛無的夢境,讓人可以深深放鬆。這部電影雖然相對比較新,但我想我們在這部電影裡面的角色更像是偷窺者,也許也不是這樣,但我認為這部電影裏面包含了這些內容。」
凱特布蘭琪秀出雷神之槌:https://reurl.cc/9EVRNn
凱特布蘭琪狂讚《地球最後的夜晚》:https://reurl.cc/vDk6Oj
#cateblanchett
#凱特布蘭琪
艾克曼層 在 高中地球科學_4. 海洋_海水的運動_艾克曼海流_曾世佑劉麗純 的推薦與評價

艾克曼 海流# 艾克曼 螺旋# 艾克曼 傳送#科氏力#塑膠垃圾DeltaMOOCx 台達磨課師是高中/高工及大學的免費公益磨課師(MOOCs)平臺。練習題、討論、教師輔導 ... ... <看更多>
艾克曼層 在 艾克曼設計 - Facebook 的推薦與評價
艾克曼 設計. 254 likes · 5 talking about this. 我們是擅長於影片創作、平面攝影、平面設計、網頁設計、多媒體製作及網. ... <看更多>
艾克曼層 在 閱讀文章- 精華區Physics - 批踢踢實業坊 的推薦與評價
海洋科學概論-海洋物理學
海洋環流與海流
Ocean Circulation and Currents
海流與環流二者並無一定的分野,海流泛指所有海水的流動(如潮流,沿岸流、風吹流等),而環流泛指大尺度的海流(如黑潮),於此節海流泛指引起其運動動力因素較單純的海水流動,環流的動力因素則較為複離。我們將괊漸蹷雯苭@界上層海域環流的分佈狀況,進行藉探討其動力因素而介紹動力因素單純的海流,其包括慣性流、Ekman 流、地衡流、熱力風流等。在陳述海流時,將順便介紹各種引起海流運動的力(包括摩擦力、壓力、科氏力等)
,及所謂的正壓、斜壓運動及海洋垂直密度分佈對海流的影響。藉合併Ekman 及地衡流,介紹Subtropical gyre及西方邊界較強流(黑潮即為其一)。最後將陳述一般海流資料展示、介紹的方法。課程中將儘量避免數學,而潮갊y及波浪引起的海流將在其他章節中介紹。海洋深層環流大都屬溫鹽環流,將陳述於下一章節。
上層海洋環流分佈
此處所云上層海域並無很嚴謹定義,混合層甚或斜溫層以上,或水深淺於數百公尺的海域,皆常可稱為上層海域。風吹引起極表面海水流動,而極表面海水又因水分子間摩擦力帶動較下層海水的流動,但此直接由風引起的海流똊靬韝W層數十公尺的水層,但此水層水的流動,造成壓力不均勻分佈,以致產生壓力梯度,將海流流動向下延伸,如黑潮是大尺度的風吹流,其影響深度可達數伯至一仟餘公。至於此影響為何沒有直接延伸至海底,此乃因海洋
內部成層效應的調整。至於產生壓力梯度的原因,主要是因大陸邊界的存在及風場分佈的不均勻。風顯然地是引起表面海洋環流的主因。氣象學家假設地球為一水球,推算所得風場如附圖。以赤道為中心,此理想狀態風場分佈ꬊn北對稱,於赤道與緯度30間,風是東北(北半球)、東南(南半球)貿易風,此二風於赤道輻合,並於赤道形成一無風帶(doldrums) 。於緯度30至60間,西風盛行,東風則盛行於緯度60至90間。此理想風場與實際風場頗相似ꄊA但於某些區間有明題不同,尤以歐亞大陸上。因陸地熱容量(heat capacility) 遠較海洋為小,故夏天陸地加熱快,形成低壓,風由海向陸,而冬季則相反,陸地冷氣壓高,故風大都由陸地吹出。歐亞大陸因面積大,故影響顯
注,此影響亦延伸至印度洋及西太平洋,形成有名的季風區。東海、台灣週遭海域、南海皆深受此季風影響,海流有明顯的季節變化。同樣地,大陸存在的影響亦可見於其他大洋,只不過其季節性變化不若季風區如此明顯。如I
TCZ的季節性位移,造成赤道上東風的季節性變化,於夏季,ITCZ位置於赤道北方,赤道上東風強,而冬季ITCZ南移,赤道上東風減弱。此季節性變化亦造成赤道海洋的季節變。
附圖顯示於北半球冬季,表面海洋環流的分佈狀況。此分佈情況絕大部份是得自於航海者的報告,科學家的量測雖較精準,唯其量太少,只適於某一特殊海流的描述,對全球海洋環流暸解助益不多。而於部份航海者少至的海區ꄊA流場是以理論推得,故此分佈僅為示意圖,可能與實際流場略有差異。但此分佈圖應大致顯亦大型海洋環流分佈的情況。從赤道區間陳述起,西向的南、北赤道海流(North、South Equatorial Current, NEC or SEC)間,夾雜딊菑@東向的赤道反流(Equatorial Counter Current, NECC)。南、北赤道海流流幅頗為寬廣,南赤道海流於太平洋及大西洋大致分佈於北緯5、6度至南緯10餘度間,流幅廣但流速較弱。因聖嬰事件及赤道動力學近二十年來較受海
洋學家重視,故南赤道海流於赤道區間的分佈及變化始較暸解,其東西分佈是東淺西深、南北深赤道淺。於赤道上(約南北緯3度間),南赤道海流下方存在一與其反向的流(東向流),此流稱之為赤道潛流 (Equatorial Count
ercurrent,EUC),在太平洋或大西洋赤道東部,因此流在某些時候會浮至表面,以致南赤道海流消失不見,此現象最常見於夏季東風盛行時。南赤道海流及赤道潛流在大西洋以年變化為主,位在太平洋年及年際變化皆重要,ꠊ靻雂④ㄢ甈O流速強弱,其影響深度亦有所變化。如大西洋的赤道潛流其最大流速變化不明顯,但其位置卻有近百公尺的垂直位移年變化。印度洋因其風場與其他二洋略不同,其南赤道海流遠較其他二洋偏南,約位於南緯7、8度
以南。
南赤道洋流的北方是東向的北赤道反流,在太平洋位其於北緯6、7度至10度間,在大西洋則較不明顯(Guinea Current 亦可視為北赤道反流),在印度洋則位於赤道至南緯7、8度間。北赤道反流有明顯的季節變化,冬季弱夏季
強,此季節性的變化緣於風場的變化。研究發現北赤道流區間隨東風加強而向東擴張,但引起此變化的理論仍待進一步釐清。有學者認為當地風場是主因,亦有學者認為赤道長波始為引起變化的主因。南赤道洋流與北赤道流因갊y速反向,故於此區間造成頗大的水平速度梯度(velocity gradient),因而造成不穩定後產生水平的波動,此波動週期約為30日,此波稱之為30 days instability wave。此波將能量向北傳遞。
北赤道反流的北邊即是西向的北赤道流,幅員分佈可由北緯10度至20餘度。在印度洋的北赤道流於夏季,因盛行的印度西南季風影響而反向往東流,此流此時又稱季風海流。北赤道流對我國、日本、美國的文化、經濟發展皆有묊嶀j的影響,而對全球熱量平衡亦貢獻良多,因它是黑潮(Kuroshio)及彎流(Gulf Stream)的起源。於大西洋,較低緯度的北赤道流與北巴西海流(或稱Guiana Current)匯合流入墨西哥灣,而後經佛羅里達海峽流出,此流出
的海流與較高緯度的北赤道海流(Antilles Current可視為此流的一部份)匯合後,沿美國東岸向北流形成著名的彎流,在佛羅里達卅東岸的彎流常稱為Florida Current。彎流因受科氏力及其變化的影響,流幅狹窄(約100-20
0公里)流速快(最大速度可途三節)。在此強勁海流的內外側往往可發現反向的南流(或渦漩,eddy),早期航海者常利用不同流向的海流,往返美東岸南北二端,對美國經濟文化發展助益良多,且北赤道海流將溫暖的熱帶海
水帶往北方,除增進極地與海水的熱交換,亦造就一些不凍港。彎流在美東北角漸轉向向東北流去,流幅漸變寬流速變弱,此時稱之為北大西洋海流。北大西洋海流漸分南北二支,北支的海流將暖水往更極地輸送,其在Greenla
nd南方又分成二支,轉向東流的一支稱為Irminger Current,沿挪威西岸繼續北流的稱之為Norwegian Current。極地海水沿Greenland東岸南下與Irminger Current匯合後繼續南流,至Greenland南端後,沿其西岸向北流後與極
地南下海流交匯後,形成一loop後沿加拿大東岸南流,此南流稱之Labrador Current。北大西洋海流的南支沿歐、非大都西岸向南流,於熱帶地區再轉向西流,形成北赤道流之源頭(如Canary Current)。北赤道流、彎流、北ꐊj西洋流及加那利流形成一順時針轉向的大環流,此環流一般稱之為subtropical gyre。
於太平洋的北赤道流,西流受菲律賓阻擋分成南北二支,南支稱為民答那峨海流(Mindanao Current),海洋學家至今仍不很暸解此海流,但咸信其最終大部份注入東向的北赤道反流。北支即是耳熟能詳的黑潮,此時的黑潮有먊椄偉翹曊}始(The begin of Kuroshio)。 黑潮沿菲律賓東岸向北流,當經過呂宋海峽時,可能因驟失陸地邊界的倚靠而有部份彎入北南海,此彎入的流很可能轉一下即於台灣南端流出再注入黑潮。但其仍有部份海流繼續入侵
南海或經台灣海峽流入東海。以往海洋學家咸信此類黑潮入侵僅發生於冬季,夏季盛行於南海的西南季風將南海水經呂宋海峽注入黑潮,但最近量測的資料卻顯示黑潮終年經呂宋海峽入侵南海。黑潮經過呂宋海峽後繼續沿台灣ꨊF岸北上,至宜蘭外海受東西走向的宜蘭海脊阻檔,而分成二支,一支東轉後沿琉球島弧外緣北上,另一支越過宜蘭海脊繼續沿台灣東岸北上。至於那一分支為黑潮主流,至今仍有所爭議,我個人相信越過宜蘭海脊的一支應為主
流。當黑潮離開台灣後不遠即遇一東西走向的shelf break,黑潮受此阻礙又分成二支,主支沿陸棚邊緣向東流而後再沿陸棚邊緣轉往北流,另一支則略轉西北向沿北棉花峽谷入侵東海陸棚,入侵的黑潮依渦漩守恆原則,於陸棚
形成一順時環流再度注入黑潮。於入侵黑潮南方,亦即台灣東北海域,一小部份入侵的黑潮入台灣東北陸棚,並形成一小型反時針轉海流,此海流對大尺度環流而言實在很小,但它形成一上升流而成為我國一重要漁場。黑潮沿ꨊF海陸棚邊緣繼續北上至日本南方,因東海陸棚非常廣擴,故黑潮距中國大陸仍有一大段距離,故黑潮對大陸的文化、經濟影響不若彎流對美國。於日本南方黑潮再度分支,一支流向西北流入日本海甚或黃海,另一支沿日本南岸
向西或西北流,此段海流有學者稱之黑潮延伸(Kuroshio Extension)。黑潮在遇日本陸地驟轉後,常會引起黑潮主軸彎曲( meander ),彎曲的大小隨年而變,一般發現於聖嬰年時彎曲較大。黑潮因直接流經日本,故對其影響
頗大,如有學者認為高緯度的日本以稻米為主食,應與黑潮有關。黑潮於日本西或西北與由極地南流的親潮(Oyashio)相會,形成漁場,親潮與Labrador Current應屬同一型海流。當黑潮繼續向西流時,開始稱為北太平洋海流
,其一部份轉向西北與阿留申海流(Aleutian Current),另一部份遇北美洲轉向南流,此南流稱之為加卅海流(California Current)。加卅海流在度於熱帶區間轉向西流,為北赤道流的源頭,如此一順時針的環流形成。
我國南海環流對整個世界環流來說可能不重要,但其為我國歷史海域,故對我國而言應是重要。南海基本上為中國大陸、越南、菲律賓、婆羅卅等陸地所包圍,而與大洋隔離,其間雖有一些通道與大洋相連,唯除了呂宋海峽外ꄊA其他通道大都不是太淺即是太窄。故海洋學家大都相信,大洋對南海的影響不大,咸信盛行於南海的季風為推動其海洋環流的主要外力,故海洋環流的時空變化應與季風息息相關。南海氣候月平均風場顯示西南季風始於四月,
最初僅限於南海南端,爾後逐月向北擴展,於此同時東北季風向北漸萎縮﹔至六月西南季風擴展至近乎整個南海,此現象一直持續至八月。九月東北季風開始出現於南海北端,其發展與西南季風類似但方向相反,東北季風向南숊X張,至十一月時,整個南海皆為東北季風所函蓋,此現象一直持續至翌年三月,其中一月東北季風最為強勁。
歷史的表面海流流速資料反應此季風的變化。受西南季風影響,於夏季期間,南海海盆中形成一大致順時針的流場,部份南海水流向東北,經呂宋海峽流出並與黑潮匯合,甚或經台灣海峽注入東海。冬季的流場則近乎相反,黑밊擉F北季風影響,經呂宋海峽入侵南海,入侵的黑潮水受季風進一步推動,沿越南東岸入侵南海南部,此時表面環流近乎形成一反時針流場。此流場分佈情形數值模擬研究南海環流學者常以此流場分佈情形為其結果的參考,一
般云二者的相似性頗高。
唯最近的錨碇海流量測顯示黑潮不論季節皆入侵南海,歷史表面海流分佈可能僅顯示極表層海流狀況,與實際上層海域流場有所不同。入侵的黑潮如何影響南海環流分佈情況,雖不是很清楚,但大區間的海洋環流模式研究,顯ꔊ僆翹擗J侵南海與當地風場無關,是大尺度運動的結果。而入侵的黑潮對南海環流的影響頗為重要,於部份區間可能與季風影響相當。剛剛回收的資料顯示,於南海中間偏北的夏季海流是西北向,此與先期理論推算有所出入,其
中差距很可能是受黑潮入侵的影響,但仍有待進一步的分析研究。
北印度洋陸地較多,風場與其他二洋有所不同,二洋於北半球的subtropical gyre不見於此處,其最有名的海流即是Somali Current,冬季沿岸向南流夏季則反之,此季節變化乃源於季風的變化。在南印度洋,西向的南赤道海갊y遇大陸阻隔轉向沿岸向南流而後與南極環極地環流相遇,相遇後轉東向流至澳洲西岸轉向北流,此北向海流稱之為西澳大利亞海流(West Australian Current),西澳大利亞海流最終再注入南赤道海流,於南印度洋形成一sub
tropical gyre。南太平洋及南大西洋亦有類似結構,其西邊流在太平洋是西澳大利亞海流(East Australian Current),在大西洋是巴西海流(Brazil Current)﹔其東邊流在太平洋是祕魯海流(Peru Current),在大西洋갊OBongelau海流(Bonguela Current)。此外在南大西洋西邊高緯度處,沿岸有一向北的流場與向南的巴西海流相匯於南緯35度處,稱之為福克蘭海流。
數學是最簡便用來描述海洋運動的工具,數學式的建立必須遵循一些物理定則,海洋運動最常用的定則即是牛頓第二定律:
Newton second law
ma = m*du / dt = SF
or
du / dt = 1 / rS F
The most important forces are: gravity, pressure gradient, Coriolis, and friction.
Density x particle acceleration = gravity + pressure gradient + Coriolis + friction
唯因 (1) 數學上非線性項﹙non-linear terms﹚至今仍無解;(2) 對大自然我們仍有許多未知(如wind stress等)。為解決此,常須耍作一些必要的假設,簡化數學上的困難,因簡化條件的不同因而將海流分類,並分別給予ꤊR名。
1. 慣性海流(Inertia Current)
慣性流即慣性力與科氏力相互作用平衡下所產生的海流。假設海水受某種力推動後,外力突然消失,海水承受慣性力而繼續運動,此時慣性力必須與一力平衡,此力即科氏力。在此二力相互作用下,所產生海流的基本方程及特ꤊ坌O
基本方程
Du / Dt = nf (1)
Dv / Dt = -uf (2)
where f = 2 W sin f f is latitude
(1)*u + (2)*n再令c2 = u2 + n2 可得
Dc2 / Dt = 0 (4)
(1)*n - (2)*u 可得
Da / Dt = -f (5)
特性
慣性流的速率是一常數;
慣性流是一圓周運動,在北半球是順時針運動,在南半球是反時針運動;
a. 是一圓周運動,其運動半徑是
r = n / f
半徑隨緯度增加而減少,於赤道上其半徑無限大。
圓周運動在北半球是順時針運動;在南半球是反時針運動。
運動週期是
T = 2p / f= 12h /sin f
故於台灣附近其週期約30小時左右,常與全曰(diurnal)潮流相混不易分別。於南海海域則清晰可見。
2 艾克曼海流(Ekman Current)
海流即摩擦力與科氏力相互作用平衡下所產生的海流。此類海流最典型的例子即是表層海水受風吹拂所引起的海流,亦是上層海域的最主要的海流。極表層海流其流速大約為風速的3%,此極表層海流因水分子間摩擦力,因而帶뀊囧鉹U層海水流動,但摩擦力隨深度而遞減,故純由風引起的海流僅限於海洋上層數十公尺。當海水受風吹動,於最初是隨風向而流,但漸漸地感受科氏力,方向因而有所偏轉。艾克曼當為研究生時表發現海流與風向並不一致,
而提出一理論解釋,因而風吹流於大洋中常稱之為Ekman current。假設摩擦力只與地球自轉力相互平衡,且假設摩擦係數為一常數,則導証所得海流即為艾克曼海流。其運動方程式及解為
-fn = (A / r)(d2u / dz2)
fu = (A / r)(d2n / dz2)
where A is eddy viscosity coefficient;在此以常數待之。此方程式加上二個邊界條件(在無限深處流速近似零,表面摩擦力等於風應力),即可求得理論解。以北風為例,其解為
u = V0e-(p / D)zcos(45o - p / D)
n = V0e-(p / D)zsin(45o - p / D)
where
D = p * (2a / rf)-(1/2)
D 稱之為艾克曼海流影響深度,是A及科氏參數的函數。
艾克曼海流表面流速是
u = V0cos(45o)
n = V0sin(45o)
V0是風應力的函數,故當風由南向北吹時,其僅為一向北的常數,但此時表面海流卻是向東北,故風與流的夾角是45度,流在風的右手方向(北半球)。
當深度增加時,指數向小於1,其意指流速隨深度增加而減小,且是指數倍減小;而於三角函數項中,其角度由表面的45度隨深度減小,故海流流向隨深度增加而呈順時針(北半球)的變化。以三維觀之,艾克曼海流於北半球呈
一順時的螺旋分佈,此稱之為Ekman spiral。
A值約為10-2-10-4,而科氏參數約為10-4,故僅數十公尺處的海流即為表面的1/10了。故純風吹流僅能影響至數十公尺的海域。
實際觀測表面海流與風速夾角並非一定是45度,此原因可能有二
海流尚未穩定(steady state) ,換言之,慣性項仍重要。
A於自然界非一常數。
5. 在海底陸海接觸區間亦存有類似艾克曼流存在,唯其Ekman spiral是由下往上,同理風在近地面區間也存有類似結構,但因空氣密度小,故其艾克曼影響層遠較海水大。故艾克曼層其實就是邊界層。
Ekman Pumping
如果風應力可表示為
則艾克曼海流的方程式可表為
將前二式分別對x及y微分相減後代入連續方程式,可得
中括弧內一般稱之為wind curl,如果wind curl 為正,則艾克曼效應可引起上昇流(upwelling) ,反之則為下沈流(downwelling) 。
艾克曼傳送(Ekman transport)
將二方程式對z積分可得
此結果陳述艾克曼海流的總質量傳輸是與風向成90度角,且傳輸量是在風向的右方。如南風(由南向北吹)引起上層海水向東傳輸,如在越南海岸,西南季風將海水向東南(深水海域)傳送,淺水海域流失的海水則必須由下層긊犲鼽犮R,如此在越南近岸海域形成湧昇流,衛星影像顯示此海域夏季海溫較週遭海域低。那季風在台灣海峽引起海水何種變化?西南季風將大陸沿岸海水向台灣傳送,結果造成台海二邊是東(台灣)高西(大陸)低。反之,於
東北季風時台海二邊則是是東(台灣)低西(大陸)高。海水高度不一樣,則產生了壓力梯度,壓力梯度又可能引起其他形式海流。在談因壓力梯度所產生的海流之前,再談另外由艾克曼海流引起壓力梯度的情況。於大洋中,묊溘鰴隻a邊界,艾克曼效應亦可引起壓力梯度。於赤道區間,東風盛行,艾克曼效應將海水向北傳送﹔在東風區間的北方則是西風帶,西風因艾克曼效應將海水向南傳送。如此一向北一向南傳送,水因而堆積,因此亦形成壓力梯
度。顯然地,壓力梯度將為引起海流的另一重要力
3. 地衡海流(Geostropic Current)
地衡海流即壓力梯度力與科氏力相互作用平衡下所產生的海流。首先以其最簡單的形態來陳述其海流基本特性。其運動方程式為
此二式稱為地轉方程,滿足此二式的海流稱之為地轉流(geostropic current)。近乎80%的海流大致滿足地轉方程,故可視為地轉流。在北半球,高壓在地轉流的右邊,流是平行等壓線,對一北向流而言,壓力梯度作用由東向西
,而科氏力則作用由西向東。若將水的密度視為常數(ρ=ρ0) ,則地衡流在垂直方向分佈情形是
此結果顯示,水平地衡流速由上層至下層海域是一致的,沒有衰減亦無增強,而垂直流速則亦是一常數,唯此常數可為零。此類上下一致的運動,在海洋中稱之為正壓(barotropic)運動。因密度是常數故其壓力梯度產生的唯一괊鴞]是水面高度(η)的變化,如此
則測知水面高度變化即可求算流速,因水面高度變化相對於水平尺度是很小的,以往不易測知,但如今衛星測高精準度愈來愈好,應用類似方法求算流速的機會增進。而亦有科學家利用二水位計來量測二地水位差,如現今此法넊N應用於台灣海峽。
但海水密度並非均勻的,二地壓力差(即壓力梯度)可由密度不同所引起的。假想海表面蓋上一平且硬的鍋蓋(rigid lid assumption),海表面無法自由起落,此時壓力梯度完全由密度不同所造成的,其地衡平衡方程式為
此時地衡流不再是不隨深度而變,其為z的函數,此種海流稱為斜壓(baroclinic)海流。又海水密度主要是受溫度影響,故上二式又稱為熱力風關係(thermal wind relation) 。因海水密度是可由量測的溫度、鹽度推算而得,故
可由密度分佈及上二方程式推算而得,其為
或
此式稱之為Margule’s relation。從此式推算所得之流速是相對於某一深度的相對流速,如何求算絕對流速,一直是海洋物理學者所追尋的,但至今所有方法仍有爭議。任何一地轉流應皆含正、斜壓運動,正壓運動產生的壓力
梯度、海流皆應自表面至海底,但斜壓運動其件隨之壓力梯度、海流是隨深度而變的,二者相互低消,故海流一般隨深度增加而減弱,因此海水自由表面斜率是與海下等密面斜率相反。請問黑潮於台灣東部,其流向向北,且黑밊擗j致滿足地衡方程,請問自花蓮向東航行,自由水面是增高或減小?又於100公尺處的水溫是增加或降低?又黑潮影響深度僅限於上層數佰公尺,為什麼?
動力高度及動力高度異常
自由水面變化以高度表示,海洋上亦常以動力高度異常表示密度的變化,回顧一下以前曾介紹過的密度
α是比容(specific volume) 為密度的倒數,S,T,P為當地的鹽、溫度及壓力。而
δ是比容與鹽度35溫度0度標準海水的異常值。於海洋中,靜水壓常可表示為
此處D即動力高度,單位是m2/s2,而動力高度異常值則為
如此地轉方程式可簡化表示為
動力高度異常亦常可表示當地海水熱含量的變化。
西方邊界較強流 (Western Boundary Current)
在前曾述及,於西風帶,艾克曼海流將水向南傳送,而於貿易東風區間,水是而北傳送,於是於副熱帶區間海水將堆高,堆高的海水形成一高壓中心產生壓力梯度,形成一順時針的流場,並引起下沈流。檢視大洋溫度分佈,我괊怚i發現雖然表海溫於赤道區間最熱,但次表層則是副熱帶區間溫度最高,且此高溫區並不在海洋中心,其位置偏西。檢視海流分佈我們也發現於副熱帶存在一順針旋轉的流場存在,唯此流場亦呈東西不對稱的分佈,西邊流幅窄
但流速強,東邊流幅寬但流速弱。明顯地,地轉流加艾克曼流無法滿足地解釋觀測的現象,換言之,除壓力、科氏力、及風應力,尚須考慮其他的外力。科學家於是加入了水平方向的摩擦力,如此運動方程式變成:
其中摩擦力項的J可視為一常數,此為最簡單表示法。若將此式中的科氏參數視為常數,其導証的流場與實際觀測仍不類似(無東西不對稱現象)。Stommel 首先注意到科氏參數隨緯度變化對西方邊界流產生的重要性。將上二式
分別對x,y微分後相加除去壓力項可得下式
其中右手第一項一般皆很小,餘下三式相互平衡,其分別是
科氏參數隨緯度變化的行星渦旋,在西方邊界,海流(如黑潮)是向北的,v是正值,而科氏參數隨緯度增加而增加故為正值,二者相乘,此項在西邊界是正值。而在東方邊界(如加卅海流),科氏參數仍是正值但是南流,故v갊O負值,二者相乘,在東邊界是負值。
wind stress curl 隨深度變化的值。假設南北向風應力可略而不計,在赤道是東風在副熱帶是西風,風應力隨緯度增加由負變正,故此項不論在東西邊界皆為正值。
此是摩擦力產生之torque,不論東西邊界,其值為正,但加上前之負號,故為負值。
前二項於西方邊界皆為正值,故須一較大摩擦力來平衡此二項,故須較大的速度梯度﹔而在東邊界前二項一為正值一為負值,摩擦項可有可無,故不須大的速度梯度,流速可緩慢且空間上較均勻。如果摩擦項可略而不計(如中ꄊB東部大洋),將前式對z積分(從上到下),可則得
此式在海洋稱之為Sverdrup relation,其描述風應力旋度與海洋傳送鹿之關係,在此風應力隨緯度增加而增加,故右首為一負值,代表海水向南傳送,此南流的海水必須由西邊界流回,此乃為個西邊界流流速強的原因。此東西
不對稱的順時針環流一般稱之為subtropical gyre,其對全球熱平衡有非常大的貢獻。
海流的展示
流速向量圖
時間序列圖
流速前進向量圖
--
╭──── Origin:<不良牛牧場> bbs.badcow.com.tw (210.200.247.200)─────╮
│ ↘ Welcome to SimFarm BBS -- From : [140.112.230.239] │
╰◣◣◢ ◢◢《不良牛免費撥接→電話:40586000→帳號:zoo→密碼:zoo》 ◣◣◢ ─╯
... <看更多>