九月開學季,我梳理了給孩子們在課内學習、課外學習共七點建議。祝廣大學子們充分開展更多元的學習範式,提升自我的創新創造力!
我在《李開復給青少年的十二封信》書裏,也談過人工智能時代的教育,我覺得很適合在現在這個開學季再次分享給大家。比起應試考試中的分數,如果同學們具備“3C”的三大能力—— Curiosity(好奇心)、Critical thinking(批判式思維)、Creativity(創造力),未來更有可能實現自己的夢想。
■ 課內學習的4個建議:要充分利用好在學校裏上課的時間。
1. 要知其然,也要知其所以然
有同學問我:“怎樣學習知識,才能真正記住呢?每年考完試後,好像就把所有的知識還給老師了。”
我給這位同學的回答是:“我學懂的知識以及知道如何實踐的知識,我現在都還記得;在工作中常用的知識,我全部記得;我自己感興趣的知識,記憶更加清晰、準確,就算有不記得的,也可以快速推算出來;相反,那些靠死記硬背學到的知識,或者自己不感興趣的知識,我已經全忘掉了。”
也就是說,死記硬背只能過考試關,而不能獲取受益終生的知識。你們在學三角形面積定理時,一定都會背“底乘以高除以二”的公式。但是,你有沒有理解這個公式是如何推理出來的,為什麼三角形的面積是這樣計算的。記住這個公式和探索這個公式是如何推導出來的,學習的效果是不一樣的。有的同學學習化學,如果每天只是機械地背誦一些反應式,肯定會覺得枯燥無味,但如果掌握了每個反應式內在的規律,並能和現實中的化學現象聯繫起來,就會理解化學這門學科的意義所在,自然就會對這門學科產生興趣。
只有懂得了知識背後的道理,才能在遇到新的問題時舉一反三,才能在需要的時候,靈活地將自己掌握的知識付諸實踐。
2. 要多問問題
會提問也是一種能力,而且你也會因為提問而加深對問題的理解。
我的女兒在學習指數的時候,不理解指數是什麼,更不相信在真實生活中指數有什麼用處,就主動來問我。我用計算銀行存款的思路來指導她,比如存入 100 元,每年的利息是 10%,那麼 10 年後,你的存款是多少?
通過這樣的計算,她終於明白了,原來指數知識和日常生活息息相關。而她能得到對這個問題的認識,也是因為她主動提問獲得的。
多提一個問題,你就擁有一種多瞭解這個世界的可能性。只有不懂就問,才能真正學到有用的知識。
3. 要勤奮
能夠實現自己的夢想的人,一定是勤奮的。
去美國讀中學之前,我只學過半年英語,因此,語言障礙成為我面臨的最大難關。剛開始,同學和老師說的話,我幾乎一句也聽不懂,那種感覺非常痛苦。那“催眠”一般的語速,總讓我在課堂上打起瞌睡。有時候,聽到同學們因為老師的一句笑話笑得前仰後合,我才從夢中驚醒,但還是摸不著頭腦。天書一般的英文,開始讓我有些望而卻步,後來,我乾脆帶幾本中文的武俠小說到課上去讀,因為覺得怎麼聽也聽不懂,還不如看小說。
然而,我心裏又是暗暗憋了一股勁的。於是,我找了一大本英文單詞書來背,經常背到半夜,不會的就一次次地翻厚厚的中英對照詞典。不過,沒多久,我就發現這並不是學英文的最好方法。因為,即使當時記住了一個單詞,但是使用率不高的話,就會完全忘記。我終於悟到了,在沒有語境的情況下,背單詞是沒用的。
後來,我還是下定決心用多交流的方式來學習英文。下了課,我不再膽怯,站在同學中間聽他們說話。如果 5個詞當中有 4個聽懂了,只有一個聽不懂,我也會趕緊問,同學們會再用英文解釋一遍給我聽。回家以後,我會默默回憶我聽不懂的單詞,然後記下來。而上課的時候,遇到聽不懂的內容,我也勇敢舉手問老師,請求老師再說一遍。
我遇到了一位好老師,她甚至犧牲自己的午飯時間幫我一對一地補習英文,她複印了小學一年級的課文,每天拿來給我念。從簡單的課文起步,我們堅持了一年。在這一年裏,我的英文水平迅速提高。學校裏所有的老師還允許我享受“開卷考試”的特殊待遇,她們讓我把試卷帶回家,並且告訴我題目裏不認識的單詞可以查字典,但是不能看書找答案。我每次回到家都嚴格按照老師說的做,遇到題目裏不認識的單詞就去查字典,但是從來沒有去翻書找過答案。因為,我覺得這是老師給我的最大信任,我不能辜負這份信任。
通過種種渠道的學習,我的英文終於逐漸接近同齡人的水平了。一年以後,我完全可以聽懂老師講的話了,英文會話也沒有問題了。到了初中三年級,也就是到美國兩年之後,我寫的作文居然獲得了田納西州的前十名。我想,這和我年齡小,容易接受新的語言不無關係,但也和我勤奮的學習有關。
4. 要培養獨立思考的能力
我在人生的各個階段,都獲益於獨立思考的能力。甚至想不到的是,這種批判式的獨立思考的能力,“救”了我的命。
在我五十二歲生日前不久,我在一次體檢中被查出肚子裏有數十顆“腫瘤”,經過反復復查,我被醫生宣判得了第四期淋巴癌。在毫無防備的情況下,我突然感受到死神和自己離得那麼近;我氣餒、懊悔、內疚,但是,治療過程中的一件具有轉折意義的事件發生了。
我遇到了一個好醫生。我的主治醫生唐季祿給我打氣:“淋巴癌第四期真的沒那麼嚴重,它跟肝癌、肺癌第四期是不太一樣的。”他告訴我,網絡上有兩篇專門討論“濾泡性淋巴癌存活率的預估方式”的論文,如果我有興趣,可以找出來看看。我認真地研究了唐醫生推薦的那些學術文章,發現淋巴癌的分期方式已經有四十多年了,可以說過時且不精准了。如果說只看標準的分類,我因為腫瘤數太多,所以必須歸類為第四期。但是只看腫瘤數量是最準確的嗎?根據我研究的那幾篇論文,分期的目的就是預測存活概率和時間。那麼,最準確的預測方法就是尋找和我病情足夠相似的人,根據他們的不同因素,如年齡、症狀、血液指數、腫瘤數量及大小等 20多種,和他們的實際存活結局來理解哪些因素是最重要的,並且把這些因素整合起來。這樣的研究肯定要比四十多年前的粗分類來得准!
自己研究病情,就像是自己坐在副駕駛座上,可以隨時掌握路況。醫生的治病策略、用藥思維,你至少並不是茫然無知。我又拿出以前做學術的精神,把全部20幾個特徵與我的檢查結果相對照,發現我雖然屬於第四期,但整體狀況其實沒那麼悲觀。原來醫學上對所有淋巴癌的分期方式,至少對我的病情來說是不正確的,我的情況是較輕的。於是,我突然從“第四期癌症頂多幾個月”,變成“至少還有好幾年”可以活。倘若好好照顧自己,更有可能終身不再復發!這個發現有如一線曙光,從此之後,癌症所帶來的一切負面影響,就開始悄悄起了變化。
批判性地看待醫學上對淋巴癌的分類,通過獨立思考,獨立研究的方式來獲得對自己病情的準確判斷,讓我自己從精神上獲得了新生。
■ 課外學習的3個建議:課堂外的時間,我鼓勵同學們,去探索你們熱愛的東西,多實踐,多多鍛煉自己的創造力。
5. 要動手實踐
美國華盛頓兒童博物館的牆上寫了這樣一句格言:“我聽到的會忘掉,我看到的能記住,我做過的才真正明白。”
我記得小時候,我的父親曾讓我們幾個兄弟姐妹解答這樣一個問題:用 6 根火柴拼成 4 個大小一模一樣的正三角形。通過動手實踐,我們都找到了正確的答案。這樣的實踐讓我對相關的幾何和空間知識記憶深刻,也訓練了我使用新穎的思維解決問題的能力。
我在高中時參與美國的高中生創業嘗試課程,創辦自己的公司。我們當時的公司非常簡單,就是從當地的建材市場買來鋼材,然後利用週末時間到工廠裏加工這些鋼材,我們把鋼材切成很小的一塊塊圓環,然後在圓環上刻上簡單的雕花。在負責推廣的過程中,我們發現學生的家長並不需要這樣的圓環,最後產品幾乎是內部消化掉了。
這次的親身實踐,讓當時 15 歲的我意識到,真正好的產品,不是求人去買的,而是必須有市場需求。有了這樣的認識,我在第二次的創業嘗試中就會把市場需求作為我創辦的公司的方向。從需求出發,生產有需求的產品,牢記這樣的理念,第二次的創業嘗試獲得了成功。這些對於創辦公司的經驗,都是我從實踐中一點一滴積累起來的。
只有實踐,你才能知道你的想法是否可行。
6. 要追隨自己的興趣愛好
只有做自己真正喜歡做的事情,才能做到最好。
我在上大學時,一直以為自己喜歡法律,將來想做一名律師。可是上了幾門課後,我發現自己對此毫無興趣,於是跟家人商量轉系,數學是我的一個備選項。但是,當我加入了“數學天才班”後,發現我的數學突然從“最好的”變成“最差的”。我雖是田納西州的冠軍,但當我與來自加州或紐約的“數學天才”交手時,才發現自己真的技不如人。我深深地體會到那些數學天才是因為“數學之美”而對它癡迷的,而我並非如此。我一方面羡慕他們找到了最愛,一方面遺憾自己並不是真的數學天才,也不會為了它的美而癡迷,因為我不希望我的人生意義就是為了理解數學之美。
我想到了計算機,我在高中時就對計算機有濃厚的興趣,有一次,為了解答一個複雜的數學方程式,我寫了一個程式,然後把結果打印出來。當時因為機器運行的速度太慢,我沒有等到結果打印出來就回去了。週一回到學校,我才知道我們學校所有的打印紙都被我打光了。雖然挨了老師一通罵,但我的心裏有了一股欣喜,原來這個數學方程式有無數的解,我走後,程式一直在運行,計算機就一直在打印結果。
對計算機的興趣此時在我的心中醞釀,雖然當時計算機專業算是個默默無聞的專業。接下來,我選修了一門計算機編程課,幾個月的課上下來,我發現了自己在計算機方面的天賦。我和同學們一起做編程,他們還在畫流程圖,我就已經完成了所有的題目。考試的時候,我比別人交卷的時間幾乎早了一半,我不用特別準備,也能拿高分。
通過學習計算機 , 我有了一種前所未有的震撼:未來這種技術能夠思考嗎?它能夠讓人類更有效率嗎?計算機有一天會取代人腦嗎?我感受到了一種振奮,解決這樣的問題是我一生的意義所在。
我每天都像海綿一樣吸收著知識,在一門公認為是計算機專業最難通過的“可計算性和形式語言”課上,我考了 100 分,也就是A+ 的分數,創造了該系的一個紀錄。大三大四時我就開始和研究生一起選修碩士和博士課程,接手各式各樣的項目,在這些項目中,我嘗試著攻克一個又一個的難關。畢業後,我在計算機方面創造出了一些成果。
我覺得自己是幸運的,因為我在很年輕的時候,就找到了自己熱愛的事情,並且願意為之付出一生的努力。
7. 要多培養自己的創造力
我的中學是在美國的橡樹嶺讀的,當時的感受就是,學校的功課很輕鬆,每天的家庭作業很少,但是每天有很多稀奇古怪的項目。比如,當時歷史課教到美國印第安人的時候,不是用課本告訴你發生了什麼,而是讓一個團隊寫一個話劇,或者是進行關於移民者和印第安人的辯論。
這些項目都沒有一個標準的答案,但會引導我們從不同的角度看問題,但我們的創造力和想像力,可以在這些稀奇古怪的題目中得到鍛煉。
後來,我回到北京創辦微軟中國研究院面試時,對前來面試的學生也注重的是對他們思維方式的考驗,我們向面試者提出了這樣的問題:
o 為什麼下水道的蓋子是圓形的?
o 估計一下北京一共有多少個加油站。
o 你和你的導師如果發生分歧怎麼辦?
o 給你一個非常困難的問題,你想怎樣去解決它?
o 兩條不規則的繩子,每條繩子的燃燒時間為 1小時,請在 45分鐘燒完兩條繩子。
這些題目雖然聽上去很“怪”,但我們出題的本質也不一定要聽到正確答案,而是要從回答問題的思路中聽到面試者的思維方法。
孩子們,比起試卷上的分數,我認為你們底層的思維能力,會是更珍貴的能力。你在學習每一門科目時,鍛煉出來的能力是未來最能幫助你們的事情。就像你學了代數,也許不會去研究數學,但是這對鍛煉你的思維有幫助;你學了英文,不一定會出國,但是英文可以在瞭解世界最前沿的文獻、在有效交流方面幫助你;你學了畫畫,不一定成為畫家,但是你在學習畫畫的過程中鍛煉的觀察力、空間力、想像力會對你有幫助。
過去,我們對教育成功的衡量標準是學生能不能記得被教的東西。但是未來,教育的精華體現在即使你忘記了所有你學的東西,你還具備思維方式、智慧和能力。
當你已經忘記了歷史事件發生的年代,你還是知道歷史帶給我們的人類的智慧和教訓;當你已經不會編程了,你還是有編程帶給你的邏輯思維;當你已經不會背莎士比亞的詩了,你依然懂得文學的美,這些才是教育的精華。
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
「邏輯 訓練 用處」的推薦目錄:
- 關於邏輯 訓練 用處 在 Facebook 的精選貼文
- 關於邏輯 訓練 用處 在 吉先生與吉太太的吉霸婚生活 Facebook 的最佳貼文
- 關於邏輯 訓練 用處 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
- 關於邏輯 訓練 用處 在 コバにゃんチャンネル Youtube 的精選貼文
- 關於邏輯 訓練 用處 在 大象中醫 Youtube 的最佳解答
- 關於邏輯 訓練 用處 在 大象中醫 Youtube 的最讚貼文
- 關於邏輯 訓練 用處 在 什么是逻辑,以及如何培养逻辑思维 - LibertyinDeath 的評價
- 關於邏輯 訓練 用處 在 靠北書記官138 強烈建議法官檢察官考上受訓時加強邏輯訓練 的評價
- 關於邏輯 訓練 用處 在 十二、逻辑回归 - GitHub 的評價
- 關於邏輯 訓練 用處 在 [問題] 求訓練反應,邏輯的遊戲- Play Station - PS 的評價
邏輯 訓練 用處 在 吉先生與吉太太的吉霸婚生活 Facebook 的最佳貼文
#東雨文化 #練習本 #童書繪本 #遊戲書
#認知能力培養 #好品格養成 #有好康
🔥團購連結:https://gbf.tw/f9pkd
大家都知道我們在家其實沒有在看電視的,所以地瓜球在家除了玩就是看書,
我也很常陪她繪本,希望能藉由繪本的感染力,來讓她在認知還有行為上都可以有所進步!!
東雨文化出了一系列-“好品格養成繪本”,每一本吉太太都覺得很棒,
藉由可愛的小動物們,來讓孩子了解這些行為有哪些不合宜,然後有什麼方式可以改善!
說實話,有時候我也是會用處罰的方式來規範地瓜球的行為,但是我覺得常常體罰和處罰的效果也是有限,(每次打罵完媽媽很愧疚!!)
如果藉由繪本可以讓孩子打從內心願意遵守規定,學習禮貌等等,我相信這是身為父母最求之不得吧😬~~
好品格養成繪本,這幾本在歐美都相當有名,可以說是貼近孩子的生活,也是孩子必讀的生活主題繪本啊!!
#吉太太大推薦組合 #超高cp值組合 #必買 👍
#好品格養成繪本套組,這一套有十本
購買還會直接贈送滿額贈解密拼圖一本套書的親子互動手冊
另外還有送兩款桌遊-尋找維尼(售價399元) + 玩具瘋狂箱(售價199元),這是否太划算了啦!!!
另外東雨文化的 #N次寫學習本 和 #桌遊 也是吉太太大力推薦的育兒好物唷,
像是可以一直蓋的印章筆,在寫字和蓋印章得過程中,可以學習數字、注音和英文字母!
而且"我會寫123"、"我會寫ABC" 、"我會寫ㄅㄆㄇ"這三本練習本可以從學齡前用到低年級都沒問題唷!
還有"剪剪貼貼系列"的遊戲書也很棒,可以訓練孩子的邏輯和順序概念呢!
另外,身為迪士尼控的媽媽看到這一系列的迪士尼桌遊cp值如此高,真的不能不把他們帶回家!!
而且不只是圖案超卡哇伊,遊戲內容也很棒,
藉由遊戲讓孩子可以練習手眼協調、邏輯思考能力、創造力還有美感等等,
邊玩邊學好有趣,小孩也比較沒壓力!!
#我是設計師系列
#3in1冰雪奇緣系列桌遊
#玩出專注力系列
#公主好朋友
這幾款都是地瓜球很喜歡玩的唷❤️~~
如果真的不知道怎麼挑,也有分齡組合唷!!!(詳細組合內容請直接看貼文照片或者到團購表單看唷)
🔹2歲小手肌肉動動組
🔹3歲公主入門組
🔹4歲公主提升組
🔹5歲冰雪邏輯組
公主系列桌遊都是地瓜球好喜歡的,想不到不用到迪士尼,在家也可以滿滿高CP值的迪士尼桌遊可以玩呢😍~~
#滿額贈 🎉🎉🎉
單筆消費滿999元即贈【解密拼圖 (售價160元)】不挑款,不累贈!
凡購買【2~5歲超值優惠組合套書 】任一套,即贈送【解密拼圖 (售價160元)】(不挑款)
✨心得文:https://reurl.cc/GmyklW
🔥團購連結:https://gbf.tw/f9pkd
⏰團購時間:8/4~8/10 23:59
▍客服資訊 ▍
若有任何產品相關問題歡迎詢問 :
電話:0800-211215
客服時間:周一~周五 08:30~17:30
Email:請洽【 東雨文化 官方粉絲團】
邏輯 訓練 用處 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
邏輯 訓練 用處 在 コバにゃんチャンネル Youtube 的精選貼文
邏輯 訓練 用處 在 大象中醫 Youtube 的最佳解答
邏輯 訓練 用處 在 大象中醫 Youtube 的最讚貼文
邏輯 訓練 用處 在 靠北書記官138 強烈建議法官檢察官考上受訓時加強邏輯訓練 的推薦與評價
我說的實際行動是有辦法讓人相信你說的是對的,你在這邊講半天沒人相信你,又破壞雙方關係,沒半點用處。不過你覺得有用想繼續也是你的自由。 6 年 檢舉. ... <看更多>
邏輯 訓練 用處 在 十二、逻辑回归 - GitHub 的推薦與評價
scikit-learn 的 LogisticRegression 提供了许多用于训练逻辑回归的技术,称为求解器。 ... L1 的用处在于它可以将特征系数逼近0,从而创建一种特征选择方法。 ... <看更多>
邏輯 訓練 用處 在 什么是逻辑,以及如何培养逻辑思维 - LibertyinDeath 的推薦與評價
各大招聘网站上对于应届生的要求里,一般都会有一条:“较强的逻辑思维能力”。 ... 这才是逻辑思维真正有用处的地方,上面的题目只不过是hr在招聘时, ... ... <看更多>