摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
「ic market入金」的推薦目錄:
- 關於ic market入金 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於ic market入金 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於ic market入金 在 財經主播/主持人 朱楚文 Facebook 的最讚貼文
- 關於ic market入金 在 [舉手] IC market 出入金問題- 看板ForeignEX - 批踢踢實業坊 的評價
- 關於ic market入金 在 ICMarkets 如何入金、開設帳戶&取款教學 - YouTube 的評價
- 關於ic market入金 在 [舉手] IC market 出入金問題 - PTT 熱門文章Hito 的評價
- 關於ic market入金 在 ic markets黑平台的情報與評價,YOUTUBE和網路上有這樣的 ... 的評價
- 關於ic market入金 在 [舉手] IC market 出入金問題- 看板ForeignEX | PTT職涯區 的評價
- 關於ic market入金 在 [舉手] IC market 出入金問題- foreignex - PTT職涯區 的評價
ic market入金 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
深度:中科院AI勢力崛起
2020-01-21
智東西
文 | 韋世瑋
我們將時針倒回至七十年前。
己丑年甲戌月,東四馬大人衚衕10號的冬天全然未見絲絲涼意。這看似並不起眼的北京城中一隅,正醞釀着一場影響中國科技發展的深刻變革。
小衚衕裏,時年57歲的郭沫若被正式任命爲中國科學院院長。歷史以此爲起點向前奔涌,往後領導班子不斷更替的七十年間,我國自近代以來百廢待興的科技產業發生了翻天覆地的變化。
中國科學院(簡稱中科院)是我國在自然科學和高新技術綜合研究領域的最高學術機構。自成立以來,逐漸建成了完善的自然科學學科體系,覆蓋物理、化學、環境與生態學等學科,爲我國國家安全和科技硬實力的發展上,成爲了不可或缺的國家戰略科技力量。
從首次人工合成牛胰島素,到第一臺原子力顯微鏡(AFM)的誕生;從第一臺大型向量計算機系統,到首款通用處理器芯片「龍芯1號」的自主研發……中科院一路高舉科學振興的旗幟,帶領我國無數高端學科和科技產業萌芽、興起與爆發。
在學術研究領域,中科院旗下擁有12所分院,超100家科研院所,中國科學院大學、中國科學技術大學、上海科技大學(與上海市共辦)均爲中科院所屬的全國重點大學。建院以來,中科院已培養了近千名科技領軍人物和科技尖子人才,涌現出一批又一批的高科技創業者。
隨着人工智能的大火再度把世界科技熱潮點燃,中科院仍保持着強勁實力屹立於世界AI領域的發展潮頭。
放眼世界,2019年全球頂尖計算機科學機構排行榜CSRankings中,中科院以5.3分排名AI全球榜第四,僅次於清華、北大和卡耐基梅隆大學。
回望中國,中科院一手甩出寒武紀、雲從科技等估值10億美元的AI獨角獸,一手穩握中科曙光、科大訊飛和中科創達等多支A股王牌,在羣雄割據混戰的AI戰場中肆意廝殺。
國內外AI科技競賽一波未平一波又起,不知不覺間,中科院AI勢力的星星之火在2019年AI落地生死戰中,歷經了數萬家企業落幕背後的暗潮撲殺,正以爆發之態燎原至漫山遍野。
溯源中科院這場AI勢力崛起的背後,不僅是瞭解我國最高科研學術機構的技術根基和人文底蘊,我們對中科院系的冰山一角進行層層剖析的同時,也嘗試從中窺見這派AI勢力在當下產業落地生死戰的底牌與新活法。
一、中科院的根:研發與人才四十餘年灌溉
中科院系AI企業的野蠻爆發與生長,源於中科院深埋於我國科技土壤的根,離不開研發與人才長年累月的滋養和灌溉。
中科院的研發實力有多強?2019年《Nature》雜誌公佈的2019自然指數(Nature Index)年度榜單中,中科院以1678.64分一馬當先,超越845.54分的哈佛大學,猛衝全球領先研究機構第一的寶座。
細數我國改革開放四十餘年,在國民經濟、國家重大需求乃至世界科技前沿領域,亦活躍着中科院的身影。
2018年,中科院系統梳理了它在四十年間所研發的40項具有代表性、標誌性的重大科技成果。
其中在國家重大需求領域,中科院微電子所組織全國性產學研用聯盟,七年間不斷攻克集成電路(IC)產業研發瓶頸,實現22nm高K介質/金屬柵工程、14nm FinFET器件、新型閃存器件和可製造性設計等關鍵技術突破。
與此同時,在關鍵工藝模塊上,中科院微電子所還形成了較爲系統的知識產權佈局,擁有專利2406項,其中國際專利483項。
中科院持續在各個領域加強核心技術攻堅,實際上爲其在AI產業的爆發打造了一支又一隻精兵強將。
根據中國新一代人工智能發展戰略研究院在2019年5月發佈的《中國新一代人工智能科技產業發展報告》,截至2019年2月28日,我國共有75家AI領域的非大學科研機構,中科院下屬科研院所爲38家,以51.4%的佔比盤踞我國非大學科研機構陣營的半壁江山。
不僅如此,中科院下屬科研院所還強勢霸榜了我國AI領域專利數Top 10非大學科研機構。數據顯示,從第一名的中科院計算所,到第十名的中科院上海微系統所,中科院共爲我國AI產業貢獻了15457項AI技術專利。
人才之於研發,亦如園丁之於園林。
從成立至今,在郭沫若、方毅、盧嘉錫、周光召、路甬祥、白春禮一代代院長的帶領下,中科院如海納百川般吸引了無數身居科研金字塔頂尖的學術巨擘,遍佈數學物理、生命科學、信息技術和化學等多個領域。
現階段,中科院學部共有830名院士,107名外籍院士,平均年齡高達73歲。
81歲的並行算法、高性能計算專家陳國良院士正是其中的一員。他曾開發了國產曙光並行機「用戶開發環境」商用軟件,並帶領團隊成功研製出萬億次高性能計算機「KD-90」,爲我國高性能計算領域的自研核心技術添上了濃墨重彩的一筆。
外籍院士中,時年72歲的微電子學家、FinFET之父胡正明提出的鰭式場效晶體管(FinFET)芯片工藝技術,不僅成功讓芯片晶體管構造從原先的2D邁入3D大門,還打破了曾限制半導體產業發展許久的「摩爾定律」,爲全球半導體產業快速進軍先進工藝領域作出了巨大貢獻。
在近千名院士的披荊斬棘之下,雲從科技創始人及CEO周曦、寒武紀創始人陳天石與陳雲霽、雲知聲創始人樑家恩等一衆出身於中科院的後起之秀,亦在AI領域嶄露頭角,力圖創造一個又一個創業佳話。
縱觀中科院的科研實力與人才優勢,自成立七十餘年——尤其是改革開放後的四十一年間,日復一日地滴匯成海、聚沙成塔,不僅推動了我國科學技術硬實力的復興,亦爲如今中科院系AI公司在產業的爆發埋下伏筆。
二、中科院系AI企業的三大主戰場
如果說AI用了六十年的時間,才讓世界重新關注到它。那麼,中科院自改革開放後花了四十餘年,才讓中科院系企業在當下迎來爆發,這並不意外。
往前,我國的AI產業有中科曙光、科大訊飛和新鬆機器人等公司,在高性能計算、語音、機器人等領域開創基業的篳路藍縷。
往後,國內AI領域則有寒武紀、雲從科技和雲知聲等AI獨角獸與初生牛犢將優勢傳承,在AI芯片、AIoT、計算機視覺等市場不斷釋放潛力。
2019年年初,全球創投研究機構CBInsights發佈32家全球AI獨角獸公司名單。其中,出身中國的10家企業中,寒武紀、雲從科技和雲知聲爲中科院系創企,自動駕駛創企Momenta也有多名高管出身中科大。
中科院系在國內的競爭力同樣強勁。2019年8月,賽迪研究院發佈《2019賽迪人工智能企業百強榜研究報告》,在綜合實力TOP100榜單中,科大訊飛、中科曙光、寒武紀和漢王科技等9家中科院系企業榜上有名。
四十多年來,不斷在AI市場展露野心的中科院系企業已在多個領域開枝散葉。
從當前全局來看,中科院系企業的戰場主要集中在計算機視覺、AI語音和AI芯片三大方向。
它們從成立之初就開始逐漸影響着這些行業,在利用創新技術瓜分市場的同時,也重新定義着傳統市場的變革之路。
1、計算機視覺(CV)
計算機視覺是如今AI領域中十分熱門一個分支,同時也是極具商業化價值的賽道。
其中,以人臉識別爲核心技術的AI企業已廣泛遍佈國內市場,與安防、金融、自動駕駛和消費電子等應用場景緊密結合。
在這一市場中,中科院系老牌企業則有中科創達首當其衝。
中科創達成立於2008年,它針對成像技術開發了一系列圖像處理和智能視覺算法,既有面向衆多領域檢測人臉的年齡、性別和情緒的Face ID方案,也有面向工業、安防和交通等領域的視覺缺陷檢測。
尤其在智能網聯汽車方面,中科創達融合底層操作系統技術、Righware Kanzi 3D開發技術和智能視覺AI技術,進一步提升用戶的駕駛體驗。
據悉,中科創達在全球已擁有超過100家智能物聯網汽車客戶,其業務增速在2019年上半年約爲74%。
深度:中科院AI勢力崛起
另一廂,現在市場中老生常談的「CV四小龍」中,雲從科技則是中科院系麾下創企,成立4年就已拿下10億美元估值。
雲從科技在計算機視覺領域擁有三大核心技術,分別爲3D結構光人臉識別技術、跨鏡追蹤(ReID)技術和人體3D重建技術,在安防、金融、交通和零售等行業都有落地應用。
例如,其人臉識別技術能夠對圖像中的人臉進行屬性分析,以判斷年齡、性別、膚色、是否佩戴眼鏡和麪部遮擋物等信息,實現毫秒級響應。
2018年,國際調研機構Gen Market Insights曾發佈《全球人臉識別設備市場研究報告2018》,數據顯示,中國是全球人臉識別設備的最大消費市場,雲從科技的市場份額排名第一。
2、AI語音
要說中科院系企業在AI語音領域的最大王牌,科大訊飛當仁不讓。
自1999年成立至今,科大訊飛在語音識別、語音合成、聲紋識別和自然語言處理(NLP)等技術領域,已逐漸成爲中國AI語音行業的領頭羊。
科大訊飛的AI語音業務覆蓋智慧教育、智慧醫療、智慧城市和智慧汽車等領域。其中,在智慧教育方面開發了訊飛學習機,能夠幫助孩子定位弱項學科,制定個性化的學習方案。
科大訊飛董祕江濤曾表示,科大訊飛語音識別的市場佔有率已居全國第一。
而在新秀陣營,雲知聲和聲智科技等創企的潛力亦不可小覷。
例如,當前處在國內語音交互領域第一梯隊的雲知聲,2012年時就已將深度學習技術應用到語音識別領域,隨後還提出了面向物聯網的「雲端芯」產品體系構想。
雲知聲自主研發的雲知聲開放平臺3.0,利用語音識別、語義理解、語音合成和音頻轉寫等技術,爲移動物聯網、智能家電、可穿戴設備和醫療等領域提供AI語音解決方案。
據瞭解,目前雲知聲的覆蓋用戶已達2億,其中開放語音雲覆蓋的城市爲470餘個,覆蓋設備超9000萬臺。
3、AI芯片
在我國的半導體產業發展史上,脫胎於中科院計算所的龍芯中科自2001年以來,陸續研發龍芯1號和龍芯2號系列芯片,打破了我國缺乏自主研發CPU芯片的歷史。
而往後看,尤其是過去五年間AI專用芯片需求的爆發,中科院也孕育出了寒武紀和雲知聲兩家AI芯片獨角獸公司,以及中科睿芯、欣博電子和啓英泰倫等重要玩家。
其中,創立於2016年的寒武紀在2018年6月完成數億美元的B輪融資後,市場估值已達25億美元(約167億人民幣)。
寒武紀打造的兩代智能處理器IP,曾被搭載於華爲麒麟970和麒麟980兩款SoC中,幫助華爲一炮打響「真正的AI手機」口號。
2019年11月,寒武紀面向邊緣AI計算領域,最新推出了思元220芯片,擁有高安全、低延時和高帶寬三大優勢。
隨着思元220芯片的推出,寒武紀的AI芯片正式形成雲、邊、端三個方向的完整佈局,進一步滿足現今碎片化AI市場的多個應用場景需求。
三、回溯三大技術源頭,AI勢力的厚積薄發
追根溯源,如今中科院系AI勢力的逐漸崛起,與中科院AI歷史的變遷與演進離不開關係。
與我國曆史發展脈絡同步,中科院在結束了徘徊中前進的兩年後,國內AI的發展也逐漸醞釀着解禁。
1978年,我國著名數學家、中科院院士吳文俊提出的「幾何定理機器證明」獲得了全國科學大會重大科技成果獎,爲我國之後的AI體系構建奠定了重要基礎。
直到上世紀80年代,中國航天之父、中科院院士、兩彈一星元勳之一錢學森等先輩開始主張開展AI研究,讓我國的AI領域研究逐漸開始活躍。
隨着我國AI技術和思想的層層「破冰」,加之1994年中科院啓動支持高水平科技領軍人才引進的「百人計劃」,中科院乃至我國的AI從人才到技術、從學術到產業、從機構到企業,才一步步地蓬勃發展起來。
歷史滾輪之下,我國的AI發展脈絡與中科院息息相關。
當我們將回溯的目光放至中科院系AI企業的「身世」上,不難發現,這些企業的出身可大致分爲兩派。
一派以研究員爲出發點,其公司創始人、CEO和主要高管均爲中科院及下屬研究所出身,由研究員獨立或聯合創業而成;
而另一派則以科研項目爲出發點,公司在成立前曾爲中科院及其下屬研究所的科研項目,通過技術成果轉換後,才正式成立爲公司繼續發展。
但不論是研究員的出身,還是科研項目的孵化,這些公司的技術起點幾乎主要源於中科院的三家關鍵機構——中科院自動化研究所、中科院計算技術研究所、中科院聲學研究所。
1、中科院自動化研究所
設立於1956年的自動化所,不僅是我國最早成立的國立自動化研究機構,也是我國最早開展類腦智能研究的國立研究機構。
自動化所主要涉及生物特徵識別、機器學習、視覺計算、自然語言處理、智能機器人和智能芯片等領域的研究,漢王科技、中科唯實、銀河水滴、中科慧遠和中科視語等公司均從中孵化落地。
截止2018年底,自動化所共擁有696名科技人員,包括中科院院士2人、發展中國家科學院院士1人、IEEE Fellow 9人。
在AI領域,自動化所亦扮演着重要的開拓者角色。
上世紀90年代,自動化所以控制科學爲基礎,率先佈局AI研究。緊接着從2010年起,其AI研究方向進一步細化,開始在類腦智能研究領域出招。
據悉,自動化所通過架構設計創新,曾自主研發了量化神經處理器(QNPU),在資源受限的芯片上實現大規模深度神經網絡的獨立計算。
而在生物特徵識別技術方面,自動化所還實現了從中距離到遠距離的可識別生物特徵信息全覆蓋,包括虹膜識別、人臉識別和步態識別,已在國家衆多重要安全領域應用落地。
2、中科院計算技術研究所
計算所同樣創立於1956年,是我國第一個專門從事計算機科學技術綜合性研究的學術機構。
計算所主要研究信息處理、網絡安全、大數據處理、智能技術和虛擬現實技術等領域,曾研發出我國衆多的「第一」歷史性時刻,爲我國的高端計算機技術、數字化技術和通用CPU技術等方面作出了巨大貢獻。
例如,我國的第一臺通用數字電子計算機、第一臺109乙大型通用晶體管計算機、第一顆通用CPU芯片「龍芯1號」,以及全球PC市場份額第一的聯想集團前身皆誕生於此。
同樣,計算所亦是中科曙光、寒武紀、中科智芯、中科視拓和中科物棲等一衆AI企業的搖籃。
截至2015年,計算所的研究隊伍已超500人,其中中科院、工程院院士共5名,正高級專業技術人員70名。
而在未來,計算所也將計劃實現三個100億的產業目標,包括中科曙光市值達到100億美元、嵌入到華爲等企業的IT產品銷售100億人民幣、創業公司市值達到100億人民幣,真正成爲我國計算機產業的源頭。
3、中科院聲學研究所
與自動化所和計算所相比,聲學所則較爲「年輕」些,它成立於1964年。
聲學所主要負責聲學和信息處理技術學科的應用基礎,以及高技術發展研究,面向我國的海洋、安全、能源和生命健康等領域。
其中,聲學所的水聲物理與水聲探測、通信聲學和語言語音信息處理、聲學與數字系統集成等技術,不僅孵化了聲智科技等AI語音企業,同時也培育了一批如海天瑞聲創始人賀琳、小聲科技創始人陳孝良等產業人才。
截至2018年底,聲學所共有專業技術人員794人,包括正高級專業技術人員133人,副高級專業技術人員255人。
在國家重大科研項目領域,聲學所亦參與研製了我國「蛟龍」號載人潛水器的研發與應用,爲我國載人深潛技術的發展作出了突出貢獻。
中科院AI技術的「黑土地」不止於此,中科院軟件研究所、微電子研究所、半導體研究所等科研機構,同樣催生了衆多極具潛力的中科院系AI企業。
四、中科院的時代發展機遇
中科院系AI勢力的燎原,不僅僅是七十多年來科研技術和人才培養的厚積薄發,抓住了AI產業「甦醒」的時代機遇,亦是我國政策和中科院科技成果轉換的催化。
自我國的科技發展進程翻篇到新世紀,國家層面對AI技術和產業的嗅覺愈發靈敏。
國家高層領導人在2014年中國科學院第十七次院士大會、中國工程院第十二次院士大會開幕式上發表的一次重要講話,首次高度評價了AI和相關智能技術,無形中大力推動了我國AI技術的發展。
一年後,國務院正式頒佈了《中國製造2025》,加快推動新一代信息技術與製造技術融合發展,將推進智能製造作爲我國製造強國戰略的主攻方向。
至此,AI逐漸被提到了每一項重要產業中不可或缺的核心技術位置。
在國家政策的積極帶動下,中科院及下屬各個研究所亦開展了一場自上而下的政策規劃。
但立足於產業,如何更好地實現科技成果轉移轉化也成爲了中科院各項政策規劃的重要方向。
實際上,技術成果轉化的難點在於如何尋找技術產業化的方向。這常常缺乏專業的服務機構和人才,同時還面對部分科技成果轉化的政策不完善、科技成果與市場需求脫節等問題。
在政策方面,以下屬研究所爲例,中科院計算所在2016年制定了自身的「十三五」規劃,一是計算所發展模式要從自主創新轉變到引領創新,對標斯坦福大學;二是通過建設中科院網絡計算創新研究院,引領中國「信息高速鐵路」技術的發展;三則是支撐企業實現三個100億的產業目標。
以地方爲例,2018年,中科院科技促進發展局、中科院北京分院、中關村科技園區管理委員會共同推出了《促進中科院科技成果在京轉移轉化的若干措施》,通過支持科技成果轉化平臺建設、實驗室共享等十項舉措,推動更多科技成果在北京轉化落地。
此外,中科院還全資設立了國科創新公司,不斷探索產業技術研究院、技術企業孵化器和聯動創新產業園三種平臺的科技成果轉換模式。
截至目前,國科創新已實現了120多項科技成果轉換服務,覆蓋AI、智能製造、智能物流和智能電網等領域,孵化企業的融資規模已達到2.8億人民幣。
結語:七十載征程,中科院仍笑傲AI江湖
時光如流水,七十年的風吹雨打,中科院已然成長爲我國AI技術和產業力爭站立於世界潮頭的國之重器。
順延着它的歷史軌跡,我們可以看到,它AI勢力的強勢崛起,既有歷史的累積、人才培育的影響,也有一代代產業經驗累積後的良性循環。回顧中科院系AI企業的漫漫長路,它爲我國AI產業如何利用好產學研之間的合作優勢,提供了一個新的角度與思考方向。
但同時,我們也需意識到,在當下殘酷的AI落地戰和全球科技競賽激烈的環境中,我國整體的AI技術實力與國外仍存在一定的差距。
我國AI玩家們將要面臨的,不僅是全球科技競賽給市場格局帶來洗牌的陣痛,還需面對顛覆性技術爲各領域市場,乃至人們的生活帶來的巨大挑戰。生,便能乘着市場和資本的東風一躍而起,闖進商業落地的頭部陣營;死,便只能被大浪拍在岸邊的礁石上,隨着時間流逝被市場和資本遺忘。
未來,中科院系AI企業又將如何書寫這一頁歷史征程?時間將會告訴我們答案。
附圖:▲中科院研究單位統計表
▲我國自然科學工作者代表會議籌備會合影
▲自然指數全球百強機構前十名榜單
▲中科院改革開放四十年40項重大科技成果
▲我國AI領域專利數Top 10非大學科研機構(圖源中國新一代人工智能發展戰略研究院)
▲中科院學部院士年齡統計(圖源中科院官網)
▲陳國良院士
▲胡正明院士
▲賽迪網發佈2019年中國AI企業綜合實力百強名單
▲計算所成立公司情況(圖源計算所官網)
資料來源:https://bangqu.com/YDah49.html
ic market入金 在 財經主播/主持人 朱楚文 Facebook 的最讚貼文
【🎧廣播節目/創意領航家/朱楚文主持】
▶️金融商品百百種,我到底適合哪種投資方法?/專訪投資理財部落客市場先生許繼元
#投資理財 應該是不少人的人生中都會去學習的,
但如果不是本科系畢業的話,
可能在學校中沒有修過金融相關的課程,
要踏入投資理財可能心裡就會怕怕的,
深怕投資不好損失自己的本金,
有不確定外面的投資商品到底如何分辨,
所以投資理財該如何入門是許多人希望達成的目標。
今天節目中就為各位邀請到投資理財達人,
他自己是 #理工科背景,
在網路中希望找到投資理財 #自學 的方法,
而後也將投資理財心得,分享在網路上,
如今已是 #知名投資理財部落客,
經營的「 Mr. Market 市場先生 」部落格,
分享許多入門與小資族的投資觀念。
今天就邀請 #市場先生 #許繼元 跟我們聊聊,
他起初從工程師背景自學理財,
如何突破一開始的門檻瓶頸?
如何踏上這一段路程?
對於小資族投資理財的建議?
定存、基金、股票、外匯還有ETF等等,
該如何配置?
歡迎市場先生許繼元!
IC 之音 FM97.5
#朱楚文
直接點選連結即可收聽
——
♥️楚文首檔線上課程 #超精準提問力
快來了解👉 http://bit.ly/2N5uoaU
——
🎧楚文的廣播節目|#創意領航家
👉Podcast收聽:https://apple.co/2XtVn4C
👉Spotify收聽:https://spoti.fi/35aXhd8
📚楚文新書|#全球頂尖領袖親授的17堂課
👉 https://www.books.com.tw/products/0010784762
ic market入金 在 ICMarkets 如何入金、開設帳戶&取款教學 - YouTube 的推薦與評價
對於一般的朋友而言,如果你屬於小資金部位槓桿交易將會是你最佳的選擇而 ICMarkets 卷商也是眾多卷商中相對CP質高的卷商可以使用ICM的維基 ... ... <看更多>
ic market入金 在 [舉手] IC market 出入金問題 - PTT 熱門文章Hito 的推薦與評價
請問版上大大我用ICmarket平台想入金是要用金融卡VISA 還是信用卡VISA?還是電匯呢?試過金融卡VISA都無法順利入金請問是只能用信用卡嗎?大大推薦哪種入金方式安全呢? ... <看更多>
ic market入金 在 [舉手] IC market 出入金問題- 看板ForeignEX - 批踢踢實業坊 的推薦與評價
請問版上大大
我用ICmarket平台 想入金
是要用金融卡VISA 還是信用卡VISA?
還是電匯呢?
試過金融卡VISA都無法順利入金
請問是只能用信用卡嗎?
大大推薦哪種入金方式安全呢?
謝謝><
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 42.72.118.224
※ 文章網址: https://www.ptt.cc/bbs/ForeignEX/M.1557391266.A.AF2.html
... <看更多>