▍工業製程居然能用 Python 做優化?
Python 語言易學又強大,近年不但頻頻挑戰常居第二名的 Java 語言,還成為 AIoT 智慧製造的關鍵技能?想快速掌握 #智慧製造 #機器學習 應用實務,現在正是進修好時機!
立即報名 https://supr.link/sPDp9
工研院《Python工業連續製程分析:參數指標、預測建模一把罩》
用 · 線上+實體 · 兩階段精實課程,教會你如何用 Python 從基礎應用到案例演練!
【數位先修】 學習時程彈性的線上數位課程,完整奠定基礎
🔹工業參數資料轉換
🔹資料處理與清理
🔹視覺化呈現數據結果
【線下實戰】活用案例與模型操作,並應用至實際的工業製程優化
🔹六大機器學習模型學習與操作(使用Linear Regression、Random Forest、XGBoost、GAM等)
🔹以敏感性分析找出影響品質與成本的重要參數
🔹藉模型損失函數完成模型最佳化調整
完成兩階段課程,你將能學會:
■ 品質及成本控管參數選擇
■ 重要製程參數篩選
■ 製程品質與節能的最佳化
■ 預測節流矩陣評估方案最佳的效益
...
課程已在工研院產業學習網上開設,現在即可報名,隨時觀看體驗新技能!
更多課程介紹:https://supr.link/sPDp9
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
「linear regression介紹」的推薦目錄:
- 關於linear regression介紹 在 TechOrange 科技報橘 Facebook 的最佳解答
- 關於linear regression介紹 在 軟體開發學習資訊分享 Facebook 的最讚貼文
- 關於linear regression介紹 在 軟體開發學習資訊分享 Facebook 的精選貼文
- 關於linear regression介紹 在 コバにゃんチャンネル Youtube 的最佳解答
- 關於linear regression介紹 在 大象中醫 Youtube 的精選貼文
- 關於linear regression介紹 在 大象中醫 Youtube 的最讚貼文
- 關於linear regression介紹 在 Machine Learning - 給自己的機器學習筆記- Linear Regression 的評價
- 關於linear regression介紹 在 10 資料探勘| 資料科學與R語言 的評價
- 關於linear regression介紹 在 機器學習首部曲---邏輯斯迴歸簡介(Logistic Regression) 的評價
- 關於linear regression介紹 在 主要是計算Shapley value 當作解釋每一個特徵對分類結果的 ... 的評價
linear regression介紹 在 軟體開發學習資訊分享 Facebook 的最讚貼文
✅ 課程說明
成為一個完整的資料科學家和機器學習工程師! 加入一個由20多萬名工程師組成的線上社群,參加一個由行業專家教授的課程,這些專家實際上為矽谷和多倫多等地的大公司工作過。 這是一個剛剛在 2020年 1 月推出的全新機器學習和資料科學課程! Andrei 課程的畢業生現在在谷歌、特斯拉、亞馬遜、蘋果、 IBM、 JP 摩根、 Facebook 等頂級科技公司工作。
從頭開始學習資料科學和機器學習,得到聘用,並在 Udemy 的最現代、最新的資料科學課程(我們使用最新版本的 Python、Tensorflow 2.0 和其他程式庫)的道路上享受樂趣。 本課程的重點在於提高效率: 不要再花時間在令人困惑的、過時的、不完整的機器學習教程上了。 我們非常自信,這是你找遍任何地方才能找到的最全面、最現代的課程(我們知道,這是一個大膽的陳述)。
這個綜合性的、基於專案的課程將向你介紹資料科學家的所有現代技能,在這個過程中,我們將建立許多真實世界的專案,新增到你的履歷組合中。 你可以訪問 Github 上的所有程式碼、工作簿和模板( Jupyter Notebooks ) ,這樣你就可以馬上把它們放到你的作品集中了! 我們相信這門課程解決了進入資料科學和機器學習領域的最大挑戰: 在一個地方擁有所有必要的資源,並學習僱主想要的最新趨勢和工作技能。
課程將是非常實際的,因為我們將帶領你從頭到尾成為一名專業的機器學習和資料科學工程師。 課程提供兩個路徑。 如果你已經知道程式設計,那麼你可以直接進入並跳過我們從頭教你 Python 的部分。 如果你是全新的,我們將從一開始就教你 Python 以及如何在現實世界中使用它來完成我們的專案。 不要擔心,一旦我們通過了像機器學習 101 和 Python 這樣的基礎知識,我們就可以進入高階主題,像神經網路、深度學習和轉移學習,這樣你將能夠在真實世界中實踐,並為實戰做好準備(我們向你展示完全成熟的資料科學和機器學習專案,並給你程式設計資源和備忘錄) !
本課程的主題包括 :
✅ 資料探索與視覺化
✅ 神經網路和深度學習
✅ 模型評估與分析
✅ Python 3
✅ Tensorflow 2.0
✅ Numpy
✅ Scikit-Learn
✅ 資料科學與機器學習專案和工作流程
✅ 在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
✅ 轉移學習( Transfer Learning )
✅ 影像辨識和分類
✅ 訓練/測試並交叉驗證
✅ 監督學習 : 分類、迴歸和時間序列
✅ 決策樹和隨機森林
✅ 整體學習( Ensemble Learning )
✅ 調整超參數( Hyperparameter Tuning )
✅ 採用 Pandas 資料框解決複雜任務
✅ 採用 Pandas 處理 CSV 檔
✅ 採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
✅ 使用 Kaggle 並進入機器學習競賽
✅ 如何呈現你的發現並讓你的老闆印象深刻
✅ 如何為你的分析清理並準備你的資料
✅ K 最近鄰( K Nearest Neighbours )
✅ 支援向量機( Vector Machines )
✅ 迴歸分析( Linear Regression/Polynomial Regression )
✅ 如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
✅ 如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
✅ 配合 Google Colab 採用 GPUs
到本課程結束時,你將成為一名完整的資料科學家,可以在大公司找到工作。 我們將利用我們在課程中學到的一切來建構專業的真實世界專案,比如心臟病檢測、推土機價格預測器、犬種影像分類器等等。 到最後,你將有許多你已經建立的專案向其他人炫耀。
事實是: 大多數課程都教你資料科學,而且就只這樣。 他們會告訴你如何開始。 但問題是,你不知道接下來要往哪去,也不知道如何建立自己的專案。 或者他們會在螢幕上顯示大量的程式碼和複雜的數學運算,但是他們並沒能好好地解釋清楚到你能夠自己去解決現實生活機器學習問題的程度。
無論你是程式設計新手,還是想提高你的資料科學技能,或者來自不同的行業,這門課程都是為你而設的。 這個課程不是讓你在沒有理解原則的情況下編寫程式碼,這樣當你完成這個課程的時候,除了看另一個教學,你不知道還能做什麼。 不! 這門課程將推動你且向你挑戰,從一個完全沒有資料科學經驗的初學者,到成為一個可以滿載離開、忘記 Daniel 和 Andrei、建立自己的資料科學和機器學習工作流程的人。
機器學習在商業行銷和金融、醫療保健、網路安全、零售、運輸和物流、農業、物聯網、遊戲和娛樂、病人診斷、詐欺檢測、製造業的異常檢測、政府、學術 / 研究、推薦系統等等方面都有應用。 在這門課程中學到的技能將為你的職業生涯提供許許多多的選擇。
你聽到許多像人工神經網路或人工智慧等敘述,完成本課程,你將對這些詞有深刻的了解。
現在就加入課程,加入我們社群,在這個行業獲得支持,學習資料科學和機器學習。 我們保證這比任何關於這個話題的訓練營或者線上課程都要好。 課堂內見!
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/
linear regression介紹 在 軟體開發學習資訊分享 Facebook 的精選貼文
--課程已於 2020 年 11 月更新--
課程說明
機器學習是高需求的技能之一。 數據是新石油。
然而,學習 ML 然後進一步佈署一直很困難。 Azure ML 是 Microsoft 對機器學習進行民主化的一種方式。
Azure 機器學習(AzureML)被認為是遊戲規則變革者。 Azure 機器學習工作室 ( Azure Machine Learning Studio ) 是學習建構高級模型的好工具,無需寫一行程式碼,只要簡單地拖放即可編輯。
這個課程的設計是考慮到入門級的資料科學家,或者沒有程式設計或資料科學的背景的任何人。 本課程還將幫助資料科學家學習 AzureML 工具。 如果你已經熟悉機器學習的概念或基本知識,你可以跳過一些最初的講座或者以2倍的速度走過課程。
課程非常實用,你將能夠運用下列知識開發自己的高級模型
✅邏輯迴歸 ( Logistic Regression )
✅決策樹 ( Decision Trees )
✅線性迴歸 ( Linear Regression )
✅支持向量機 ( SVM : Support Vector Machine)
✅更多
不用任何程式設計。 而且,你將能夠將這些模型佈署為 Web 服務。
本課程是一門完整的機器學習課程,涵蓋基礎知識。 我們不僅要建立模型,還要解釋所有這些模型的各種參數以及我們可以在哪些方面應用它們。
在這個過程中,我們將從機器學習中經常使用的一些基本術語開始。
我也會解釋:
✅什麼是機器學習和一些現實世界的例子。
✅Azure 機器學習介紹
✅提供 Azure 機器學習工作室和高級體系結構的概述。
我們也將看看
✅建立 ML 模型的步驟
✅有監督和無監督學習
✅了解數據和預處理
✅不同的模型類型
✅AzureML 備忘清單 ( Cheat Sheet )
✅如何使用分類和迴歸
✅什麼是群聚或群聚分析
✅使用 AzureML 最強大的推薦引擎創建推薦系統
https://softnshare.com/machine-learning-using-azureml/
linear regression介紹 在 コバにゃんチャンネル Youtube 的最佳解答
linear regression介紹 在 大象中醫 Youtube 的精選貼文
linear regression介紹 在 大象中醫 Youtube 的最讚貼文
linear regression介紹 在 10 資料探勘| 資料科學與R語言 的推薦與評價
首先,嘗試將Linear Regression 線性迴歸用在NBA的資料看看,做NBA 得分 與 上場分鐘 ... 以下介紹常見的Classification And Regression Tree (CART),使用前須先安裝 ... ... <看更多>
linear regression介紹 在 Machine Learning - 給自己的機器學習筆記- Linear Regression 的推薦與評價
Machine Learning - 給自己的機器學習筆記- Linear Regression - 迴歸模型介紹與公式原理教學. Yo~ 今天我們來學不管大家是想學機器學習,還是想學統計,來對我們的 ... ... <看更多>